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Al. Extended related work

Spatial pooling of visual input is the process by which
spatial resolution is reduced to 1 x 1, such that the input is
mapped to a single vector. This process can be gradual and
interleaved with mapping to a feature space, because any
feature space is amenable to smoothing or downsampling.
The objective is robustness to deformation while preserving
important visual information.

Via a similarity function, e.g. dot product, the vector rep-
resentation of an image can be used for efficient matching to
class representations for category-level tasks or to the rep-
resentation of another image for instance-level tasks. One
may obtain more than one vectors per image as a represen-
tation, but this requires a particular kernel for matching.

Background The study of receptive fields in neuro-
science [15] lead to the development of 2D Gabor fil-
ters [16] as a model of the first processing layer in the visual
cortex. Visual descriptors based on filter banks in the fre-
quency domain [61] and orientation histograms [51, 14] can
be seen as efficient implementations of the same idea. Apart
from mapping to a new space—that of filter responses or
orientation bins—they involve a form of smoothing, at least
in some orientation, and weighted local spatial pooling.

Textons [17] can be seen as a second layer, originally
studied in the context of texture discrimination [81] and seg-
mentation [ |7, 52] and taking the form of multidimensional
histograms on Gabor filter responses. The bag of words
model [75, 12] is based on the same idea, as a histogram
on other visual descriptors. Again, apart from mapping to
a new space—that of textons or visual words—they involve
local or global spatial pooling.

Histograms and every step of building visual features can
be seen as a form of nonlinear coding followed by pool-
ing [5]. Coding is maybe the most important factor. For
example, a high-dimensional mapping before pooling, op-
tionally followed by dimension reduction after pooling, can
reduce interference between elements [62, 35, 4]. Weighting

of individual elements is also important in attending impor-
tant regions [25, 34, 76] and in preventing certain elements
from dominating others [32, 54, 33].

The pooling operation itself is any symmetric
(permutation-invariant) set function, which can be ex-
pressed in the form F(X) = g (> oy f(z)) [98]. The
most common is average and maximum [72, 6, 5].

Common ways to obtain a representation of multiple vec-
tors are using a spatial partition [25] or a partition in the
feature space [31, 77].

Convolutional networks Following findings of neuro-
science, early convolutional networks [22, 42] are based on
learnable convolutional layers interleaved with fixed spatial
pooling layers that downsample, which is an instance of the
coding-pooling framework. The same design remains until
today [41, 74, 26, 47]. Again, apart from mapping to a new
space, convolutional layers involve a form of weighted lo-
cal pooling. Again, the operation in pooling layers is com-
monly average [42] or maximum [72, 41].

Early networks end in a fully-connected layer over a fea-
ture tensor of low resolution [42, 41, 74]. This evolved
into spatial pooling, e.g. global average pooling (GAP) for
classification [43, 26], regional pooling for detection [23],
or global maximum followed by a pairwise loss [79] for
instance-level tasks. This is beneficial for downstream tasks
and interpretability [101].

The spatial pooling operation at the end of the network

is widely studied in instance level-tasks [2, 79, 69], giv-
ing rise to forms of spatial attention [37, 59, 7, 78, 57],
In category-level tasks, it is more common to study feature
re-weighting as components of the architecture [29, 92, 28].

The two are closely related because e.g. the weighted av-
erage is element-wise weighting followed by sum. Most
modern pooling operations are learnable.

Pooling can be spatial [28, 59, 7, 78, 57], over chan-
nels [29], or both [37, 92]. CBAM [92] is particularly re-
lated to our work in the sense that it includes global average



pooling followed by a form of spatial attention, although
the latter is not evident in its original formulation and al-
though CBAM is designed as a feature re-weighting rather
than pooling mechanism.

One may obtain a representationnofiltiple vectors e.g
by some form of clustering [30] or optimal transport [53].

Vision transformers Pairwise interactions between fea-
tures are forms ofelf-attentiorthat can be seen as alterna-
tives to convolution or forms of pooling. They have com-
monly been designed as architectural components of con
volutional networks, again over the spatial [20, 3, , 67]
or the channel dimensions [9, 87]. Originating in language
models [83]vision transformer$18] streamlined these ap-
proaches and became the dominant competitors of convolu
tional networks.

Transformers commonly downsample only at the input,
forming spatialpatch tokens Pooling is based on a learn-
able cLs (“classi cation”) token, which, beginning at the

input space, undergoes the same self-attention operation

with patch tokens and eventually provides a global image
representation. That is, the network ends in global weighted
average pooling, using as weights the attentionicf over

the patch tokens. Pooling is still gradual, simees interacts
with patch tokens throughout the network depth.

Several variants of transformers often bring back ideas
from convolutional networks, including spatial hierar-
chy [45], relative position encoding [94, 24], re-introducing
convolution [93, 19], re-introducing pooling layers [27, 45,

, 89], or simple pooling instead of attention [97]. In this
sense, downsampling may occur inside the transforengr,
for classi cation [27, 45] or detection [88, 89].

Few works that have studied anything other thars
for pooling in transformers are mostly limited to GAP [45,

, 82, 70]. cLs offers attention maps for free, but those
are typically of low quality unless in a self-supervised set-
ting [8], which is not well studied. Few works that attempt
to rectify this in the supervised setting include a spatial en-
tropy loss [63], shape distillation from convolutional net-
works [56] and skipping computation of self-attention, ob-
serving that the quality of self-attention is still good at in-
termediate layers [384]. It has also been found bene cial to
inject thecLs token only at the last few layers [80].

We are thus motivated to question why the pooling oper-
ation at the end of the network needs to be different in con-
volutional networks and vision transformers and why pool-
ing with acLs token needs to be performed across the net-
work depth. We study pooling in both kinds of networks, in

supervised and self-supervised settings alike. We derive al®
simple, attention-based, universal pooling mechanism that1é

applies equally to all cases, improving both performance
and the quality of attention maps.

A2. More on the method

In subsection A2.1, we summarize the generalized pool-
ing framework of subsection 3.1. We then detail how to
formulate methods studied in subsection 3.2 as instances of
our pooling framework so as to obtain Table 1, examining
them in groups as in subsection 3.2. Finally, we summarize
SimPool in subsection A2.6.

Notation By id we denote the identity mapping. Given

indicator function of sef\, by j the Kronecker delta and
by [P] the Iverson bracket of statemedt By A B we
denote the Hadamard product of matriége® and byA "
the Hadamard-th power ofA. We recall that by 1; » we

denote the row-wise and column-wisg-normalization of
a matrix, respectively, while , is column-wise softmax.

Algorithm 1: Our generalized pooling framework.

input : p: #patchesd: dimension
input : X 2 RY P: features

option: k: #pooled vectors

option: INIT: pooling initialization

option: T: #iterations

option: f &g;f § g: query, key mappings

option: s: pairwise similarity function

option: h: attention function

option: f ! g: value mapping

option: f: pooling function

option: f % g;f | g: output mappings

output: d% output dimension

output: U 2 RY k: pooled vectors
1d®  d . input dimension
2 X0 X 2R® k . initialize features
3 U%  INIT(X) 2 RY K . initialize pooling

1do

5 | Q H(UY) 2 RN k . query (1)

6 | K (XY 2RM P . key (2)

7 S 0p « . pairwise similarity

8 fori 2 [p],j 2 [k]do

0 si  s(k.i:q.)

10| A h(S)2RP Kk . attention (3)

1 |V L(XH 2R P . value (4)

12 | Z f Yf(V)A)2R" K . pooling (5)

13 | Xt L (XY 2 RY™ P update feat. (6)
|yt L(z)2 RY™ k. update pool. (7)
d® d’ . output dimension
u ut . pooled vectors




A2.1. Pooling framework summary Generalized mean (GeM) [69] AssumingX 0,
Our generalized pooling framework is summarized in al- 0 1.
gorithm 1. Asinput, it takes the featureX 2 RY P, rep- . @1”) A
resentingo patch embeddings of dimensidnAs output it cem(X) = P X, (AS)
returns the pooled vectot$ 2 RY ¥, that is,k vectors of =t
dimensiond®. As options it takes the numbek of vectors =(X 1p:p)l =f (f (X)a); (AB)
to pool; the pooling initialization functiomIT; the number
T of iterations; the query and key mappirigs‘Q of ko where all operations are taken element-wise,(1  )=2

the pairwise similarity functiors; the attention functiot;
the value mapping !, g; the pooling functiorf ; and the SimPool has the same pooling function but is based on
output mapping$ | g;f {0 an attention mechanism.

The mappings and dimensions within iterations may be | og-sum-exp (LSE) [66]
different at each iteration, and all optional functions may
be learnable. As such, the algorithm is general enough to
incorporate any deep neural network. However, the focus is
on pooling, as is evident by the pairwise similarity between
queries (pooled vectors) and keys (features) in line 9, which

is a learnable parameter aad- 1,=p.

0 1

1 1 X
se(X) = T log @6 exp(rx,j )A (A7)
=1

is a form ofcross-attention

A2.2. Group 1: Simple methods withk = 1

These methods are non-iterative, there are no qQery
key K, similarity matrixS or functionh, and the attention
is a vectora 2 RP that is either xed or a function directly
of X . With the exception of HOW [78], the value matrix is
V = X, thatis, v = id, and we are pooling into vector
u=z2RY thatis, y =id. Then, (5) takes the form

u=f Yf(X)a)2 R (A1)

and we focus on instantiating it to identify functiénand

attention vectoa. With the exception of LSE [66], function
f isf (8) and we seek to identify.
Global average pooling (GAP) [43, ] According

to (9),

1xp
A(X) = b X4 T X1p=p=f {(f 1(X)a); (A2)
j=1

1 (1
wheref (X) = x— 2z =

1,=p.
Max pooling [79]

X, thusf 1 = id, anda =

AssumingX 0,

0 1:

A

max (X) =max xj = lim @ x (A3)
j2[p 11

i2[p] j=1

= lim (X 1) = 1,5 (F1 (X)a); (A4)

where all operations are taken element-wiseard1p,.

=f Yf(X)a); (A8)
where all operations are taken element-wisis,a learnable
scale parametef,(x) = €* anda = 1,=p.

HOW [78] The attention value of each featuxg is its
normkx.; k. That is,

(A9)

= diag(X > X) 2 RP; (A10)

obtained by pooling over channels. The value matrix is

V= yv(X)= Folavgg(X)) 2 RT P (ALD)
whereavg; is 3 3 local average poolingsC is a xed
fully-connected { 1 convolutional) layer incorporating
centering, PCA dimension reduction and whitening accord-
ing to the statistics of the local features of the training set
andd®< d is the output dimension. Then,

x 0
z=  agv, =Va=f }f 1(V)a)2R%;
j=1

(A12)

wheref ; =id asin GAP. Finally, the outputis = ?(z),

where the mappingy = 2 is " ,-normalization.

A2.3. Group 2: Iterative methods withk > 1

We examine three methods, which, giv&n 2 RY P
andk < p, seekU 2 RY ¥ by iteratively optimizing a
kind of assignment between columnsXfandU. The lat-
ter are called references [53], centroids [48], or slots [49].
Assignment can be soft [53, 49] or hard [48]. It can be an
assignment of columns of to columns ofU [48, 49] or
both ways [53]. The algorithm may contain learnable com-
ponents [53, 49] or not [48].



Optimal transport kernel embedding (OTK) [53] Pool-
ing is based on a learnable paraméte2 RY K. We de ne
thep k costmatrix C = ( ¢; ) consisting of the pairwise
squared Euclidean distances between columis ahdU,
e, G = kxi u, k2. We seek g Kk non-negative
transportation plarmatrixP 2 P representing a joint prob-
ability distribution over features of andU with uniform
marginals:

P:=fP2R? *:P1 = 1,=p; P> 1, = 1x=kg:
(A13)

The objective is to minimize the expected, unéerpair-
wise cost with entropic regularization

P :=arg rPnZiQ hP;Ci  H(P); (A14)
whereH(P) = 17(P logP)1l is the entropy of
P, h; i is the Frobenius inner product and> 0 con-
trols the sparsity ofP. The optimal solution is? =
SINKHORN(e €7 ), where exponentiation is element-wise
and SNKHORN is the Sinkhorn-Knopp algorithm [38],
which iteratively” ;-normalizes rows and columns of a ma-
trix until convergence [13]. Finally, pooling is de ned as

U= (X)P 2R™ K (A15)

where (X) 2 R Pand :RY! R isa Nystsm
approximation of a kernel embeddingR{, e.g a Gaussian
kernel [53], which applies column-wise ¥ 2 RY P,

We conclude that OTK [53] is a instance of our pooling

framework with learnablély = U 2 RY X, query/key

mappings o =  =id, pairwise similarity function

s(x;y) = k x yk? attention matrixA = h(S) =

SINKHORN(€®™ ) 2 RP X, value mappingy =

average pooling functioh = f ; and output mapping
U =id.

Although OTK is not formally iterative in our frame-
work, SNKHORN internally iterates indeed to nd a soft-
assignment between the featurexoindU.

k-means [48] k-meansaimsto nda k matrixU min-

The standar#t-means algorithm is initialized byd k
matrix U° whose columns ard of the columns ofX
sampled at random and represent a sek a@entroidsin
RY. Given U! at iterationt, we de ne thep k dis-
tancematrix D = ( d; ) consisting of the pairwise squared
Euclidean distances between columnsXofand U, i.e.,
dj = X ufj % Fori 2 [p], featurex,; is assigned
to the nearest centro'un‘,j with index

¢ =arg jrry[rlll dj ; (A17)
where ties are resolved to the lowest index. Then, at itera-
tiont+ 1, centroidufj is updatedas the mean of features
X.j assigned to iti.e., for whichg = j:

1 xP
o K Cijxoi:
i=1 G j=q1

(A18)

Letargmini(D) be thep k matrixM = ( mj ) with

mj = ¢j = J =argminjoypdijo : (A19)
That is, each rovd; 2 R¥ of D yields a rowm; 2 f 0; 1g¢

of M that is an one-hot vector indicating the minimal el-
ement overd;. De ne operatorarg max; accordingly.
Then, (A18) can be written in matrix form as

Ut = X ,(argmaxy( D)) 2 RY k: (A20)

We conclude thak-means is an iterative instance af
our pooling framework with the columns d§® 2

RY kK sampled at random from the columns Xf,

query/key mappingsq = = id, pairwise simi-
larity functions(x;y) = k x ykz,attention matrix
A = h(S) = ,(argmaxi(S)) 2 RP ¥, value map-
ping v =id, average pooling functioh = f ; and
output mappingsx = y =id.

Slot attention [49] Pooling is initialized by a randormf

k matrix U° sampled from a normal distributidd (; 2)

with shared, learnable mear2 RY and standard deviation
2 R®. GivenU! at iterationt, de ne the queryQ =

imizing the sum of squared Euclidean distances of each col-WqLN(U') 2 R" X and keyK = Wk LN(X) 2 R" P,

umnx,; of X to its nearest columa,; of U:

JU)= - min k. uj ke (A16)

=g 120K
Observe that (10) is the special cdse= 1, where the
unique minimumu = (X)) isfoundin closed form (11).
Fork > 1, the distortion measur& is non-convex and we
are only looking for a local minimum.

whereLN is LayerNorm [1] anch is a common dimension.
An attention matrix is de ned as
A= 1( H(K7Q="n) 2R ki (A21)

Then, with valuev = Wy LN(X) 2 R" P, pooling is de-
ned as the weighted average

Z=VA2R" Kk (A22)



Finally, Ut is updated according to

G = GRrRU(Z) 2 RY K
Ut = G+ MLP(LN(G)) 2 R® ;

(A23)
(A24)

whereGRuU is agated recurrent unif10] andmLP a multi-
layer perceptron with ReLU activation and a residual con-
nection [49].

We now simplify the above formulation by removing
LayerNorm and residual connections.

We conclude that slot attention [49] is an iterative i
stance of our pooling framework witbl® a random
d® k matrix sampled fronN (; 2) with learnable
parameters; 2 R, query mapping q(U) =
WoU 2 R" ¥, key mapping ¢ (X) = Wk X 2
R" P, pairwise similarity functiors(x;ry) = X7y, at-
tention matrixA = h(S) = 1( 2(S= n)) 2 RP X,
value mapping v(X) = Wy X 2 R" P, average
pooling functionf = f ;, output mapping y(Z) =
MLP(GRU(Z)) 2 RY° k and output dimensiod®.

=
0

SimPool is similar in its attention mechanism, but is non-
iterative withk = 1 and initialized by GAP.

A2.4. Group 3: Feature re-weighting,k = 1

We examine two methods, originally proposed as com-

The outputX ® = V 2 RY P is a new tensor of the same
shape asX, which can be used in the next layer. In this
sense, the entire process is considered a block to be used
within the architecture of convolutional networks at sev-
eral layers. This yields a new family of networks, called
squeeze-and-excitation netwo(&ENet).

However, we can also see it as a pooling process if we
perform it at the end of a network, followed by GAP:

z= a(V)=diag(q)X 1,=p2 R% (A28)

We conclude that this modi ed SE block is a nor
iterative instance of our pooling framework witl} =
A(X) 2 RY, query mapping q(u) = (MLP(u)) 2
RY, no key K, similarity matrix S of function h,
uniform spatial attentiora = 1,=p, value mapping
v(X) = diag(gq)X 2 RY P and average pooling
functionf = f .

The original design does not uaer z; instead, it has an
output mapping x (X) = V =diag(q)X 2 RY P. Thus,
it can be used iteratively along with other mappingXato
form a modi ed network architecture.

Convolutional block attention module (CBAM) [92]

This is an extension of SE [29] that acts on both the channel
and spatial dimension in similar wayShannel attentioms
similar to SE: It involves (a) global average and maximum

ponents of the architecture, which use attention mechanism%oonng ofX over the spatial dimension

to re-weight features in the channel or the spatial dimension.

We modify them by placing at the end of the network, fol-

lowed by GAP. We thus reveal that they serve as attention-

U0=( a(X) max(X))2R* % (A29)

based pooling. This includes pairwise interaction, although (b) a learnable gating mechanism forming vector

this was not evident in their original formulation.

Squeeze-and-excitation block (SE) [29] The squeeze
operation aims to mitigate the limited receptive eld of con-
volutional networks, especially in the lower layers. It uses
global average pooling over the spatial dimension,

u= A(X)2 R (A25)

Then, theexcitationoperation aims at capturing channel-

wise dependencies and involves two steps. In the rst step,

a learnable gating mechanism forms a vector

q= (MLP(u®) 2 RY; (A26)
where is the sigmoid function anéiLP concists of two
linear layers with ReLU activation in-between and forming
a bottlenect of hidden dimensial¥r. This vector expresses
an importance of each channel that is not mutually exclu-
sive. The second step re-scales each channel (roi) lmof

the corresponding element gf

V =diag(q)X 2 RY P: (A27)

q= (MLP(U%)1,=2) 2 RY; (A30)
which is de ned as in SE [29] but includes averaging over
the two columns before ; and (c) re-scaling channels
(rows) of X byq,
V =diag(q)X 2 RY P: (A31)
Spatial attentiorperforms a similar operation in the spa-
tial dimension: (a) global average and maximum pooling of
V over the channel dimension,
S=( a(vV7)

max (V7)) 2 RP 2; (A32)

(b) a learnable gating mechanism forming vector
a=

(conv7(S)) 2 RP; (A33)

whereconv; is a a convolutional layer with kernel siZe 7;
and (c) re-scaling features (columns)\ohy a,

X %= V diag(a) 2 RY P: (A34)



The outputX %is a new tensor of the same shapeXas  whereu® 2 RY is the initial cLS token embedding and
which can be used in the next layer. In this sense, CBAM X ° 2 RY P contains the initial patch embeddings.
is a block to be used within the architecture, like SE [29].  The encoder contains a sequencélotks Given token

However, we can also see it apaoling processf we per- embeddings! = (ut X') 2 RY (*D as input, a block
form it at the end of a network, followed by GAP: performs the following operations:

z= a(X9= Vdiag(a)l,=p= Va=p2 RY: (A35) G' = F'+ Msa(LN(FY) 2 RY (P*D) (A39)
We alsosimplify CBAM by removing max-pooling from Fi*1 = G'+ MLP(LN(G!)) 2 RY (P*D) - (A40)

both attention mechanisms and keeping average poolin

only. Then, (A32) takes the form %VhereLN is LayerNorm [1] andvLP is a network of two

af ne layers with a ReLU activation in-between, applied to
s= a(V7)= V7 14=d= (diag(q)X)” 14=d (A36) all tokens independently. Finally, at the end of bldck 1,
= X>q=d2 RP: (A37) the image is pooled into vector= LN_(uT). _

_ o _ o Given Ft 2 RY (P*D) | the multi-head self-attention
This revealgairwise interactionby dot-product similarity (MsA) operation uses three linear mappings to form the
betweenq as query anX as key. It was not evident in queryQ = WoF!, keyK = WxF! and valueV =
the original formulation, because dot product was split into Wy Ft, allin R (P*D |t then splits each of the three into

element-wise product followed by sum. m submatrices, each of sitem (p+ 1), wherem is the
number ofheads
We conclude that this modi ed CBAM module is a Given a stacked matridA = (Aq;:::;Apn) 2 RY M,

non-iterative instance of our pooling framework with  whereA; 2 R%™ " fori 2 [m], we denote splitting as
u® = a(X) 2 RY query mapping o(u) = _ AL d=m 1.

(MLP(u))=d 2 RY, key mapping ¢ = id , pairwise A=Om(A)=fAL ARG R T (A41)
similarity functions(x;y) = x”y, spatial attention Thus, withQ = gn(Q) = fQig, K = gn(K) = fKjg,

a = h(s) = (conv(s))=p 2 RP, value mapping V = gn (V) = fVig, self-attention is de ned as
v(X) = diag(gq)X 2 RY P, average pooling func- p_
tionf = f ; and output mappingy = id . Ai= , K7Q= d 2RPD (D (A42)
Zi = VA, 2 R® (D) (A43)

The original design does not usginstead, it has an out-
put mapping x (X) = V diag(a) = diag( q)X diag(a) 2 fori 2 [m], whered® = d=m. Finally, givenZ = fZ;g,
RY P. Thus, it can be used iteratively along with other map- submatrices are grouped back and an output linear mapping
pings ofX to form a modi ed network architecture. yields the output ofsA:
SimPool is similar in thati® = 5 (X)) but otherwise its _ 1 d (p+1) .
attention mechanism is different: there is no channel atten- U= Wugn'(2) 2R e (A44)
tion while in spatial attention there are learnable query/key =~ Here, we decompose the above formulation into two par-
mappings and competition between spatial locations. allel streams. The rst operates on toes token embed-
dingu! 2 RY, initialized by learnable parametaf 2 R
and iteratively performing pooling. The second operates on
We re-formulate the standard ViT [18] in two streams, the patch embedding&! 2 RY P, initialized by X © 2
where one performs pooling and the other feature mapping.R P as obtained by tokenization and iteratively perform-
We thus show that the pooling stream is an iterative instanceing feature extraction. We focus on the rst one.
of our framework, where iterations are blocks. We then ex-  Givenu' 2 RY, Xt 2 RY P at jterationt, we form the
amine the variant CaiT [30], which is closer to SimPool in queryQ = gn(WoLN(u')), key K = gm (Wk LN(X "))
that pooling takes place in the upper few layers with the and valueV = gy (Wy LN(X!)). Cross-attentiorbetween

A2.5. Group 4. Transformers

features being xed. Q andK; V follows fori 2 [m]:
Vision transfprmer_ (ViT)_[ ] T.he trapsformgr encoder ai= » K’ qizp@ 2 RP (A45)
tokenizeshe input imagei.e., it splits the image intp non- ,
overlappingpatchesand maps them to patch token embed- zi= Viaj 2 RY: (A46)

dings of dimensionl through a linear mapping. It then con-
catenates a learnabte.s token embedding, also of dimen-
siond, and adds a learnabfmsition embeddingf dimen-

siond to all tokens. It is thus initialized as g' = u'+ Wyg,}(Z) 2 RY (A47)

FO=(u® x%2R" (P*D . (A38) ut*t = g' + mLP(LN(g!)) 2 RY: (A48)

ding at iteratiort + 1 is given by



We now simplify the above formulation by removing is speci ed by a modi cation of (A45)-(A48). Typically,
LayerNorm and residual connections. We also remove thestage two consists only of a few (1-3) iterations.

dependence of self-attention of patch embeddings on th
CLstoken. We conclude that a simpli ed version of stage two of
CaiT [80] is an iterative instance of our pooling frame-
We conclude that ViT [18] is an iterative instance th work with the same options as ViT [18] except for the
our pooling framework with learnable® 2 RY, query output mapping x =id.
mapping o(U) = gn(Wou) R® with d®= d=m,
key mapping k (X) = gn(Wk X)  R® P, pair- SimPool is similar in that there are again two stages, but
wise similarity functions(x;y) =, x”y, spatial at- stage one is the entire encoder, while stage two is a sin-
tenion A = h(S) = f o(s= dygl, R, gle non-iterative cross-attention operation between features
value mapping v (X) = gn(WyX) R% P, av- and their GAP, using functioh for pooling.
erage pooling functioh = f ; and output mappings Slot attention [49] is also similar to stage two of CaiT,
x (X) = MLP(MSA(X)) 2 RY P and y(Z) = performing few iterations of cross-attention between fea-
MLP(Wygn,'(Z)) 2 RY. tures and slots withx = id , but with a single head > 1

and different mapping functions.
Althoughk = 1, splitting intom submatrices and op-
erating on them independently is the same as de nimg
query vectors irRY via the block-diagonal matrix
1

Algorithm 2: SimPool. Green: learnable.
input : d: dimensionp: patches

0 g ::: O input : featuresx 2 R P

. d

Q= @ SRR Ko RY M (A49) output: pooled vectou 2 R
0 ::: q 1u®  X1p,=p2 RY . initialization (12)

m

2 X  LN(X)2RY P . LayerNorm [1]
Q interacts withK by dot product, essentially operatingin 3 g Wqu® 2 R . query (13)
m orthogonal subspaces. This gives rise to an attention , g We X 2 RY P . key (14)
matrix A 2 RP ™ containinga; (A45) as columns and a 5 a J(K>g= d) 2 RP attention (15)
pooled matrixz 2 RY ™ containingz; (A46) as columns. sV X minX 2 RY P ' value (16)
Thus, them heads in multi-head attention bear similar- f 1 (V)a) 2 RY | poo.ling(8), an

ities to thek pooled vectors in our formulation. The fact
that transformer blocks act as iterations strengthens our ob-

servation that methods with > 1 are iterative. However,

because of linear maps at every stage, there is no corresporA2.6. SimPool
dence between heads across iterations.

R _ . SimPool is summarized in algorithm 2. We are given
Class-attention inimage transformers (CaiT) [S0] This 3 feature matrixX 2 RY P, resulting from attening of
work proposes two modi cations in the architecture of tensorXx 2 R W H intop = W H patches. We

VIT [18]. The rstis that the encoder consists of two stages. form the initial representation® = A (X) 2 RY (12) by
In stage one, patch embeddings are processed alone, withglobal average poolindGAP), which is then mapped by
out acLs token. In stage two, a learnabta s token is Wo 2 RY 9 (13) to form thequeryvectorq 2 RY. Af-
introduced that interacts with patch embeddings with cross-ter applying LayerNorm [1]X = LN(X ), we mapX ° by
attention, while the patch embeddings remain xed. The \, 2 RY 9 (14) to form thekeyK 2 RY P. Then,q
second modi cation is that it introduces two learnable di- andK interact to generate the attention mag@ RP (15).

agonal matrices ;; % 2 R? 9 at each iteration (block)  Finally, the pooled representation2 R is a generalized
t and uses them to re-weight features along the channel diweighted average of thealueV = X° minX°2 Rd P

mension. . . o with a determining the weights and scalar function (8)
Thus, stage one is specied by a modication of determining the pooling operation (17).
(A39), (A40) as follows: The addition to what presented in the paper is Layer-

Norm after obtainingu® and beforeK;V . That is, (14)
t— yt t t d p ) )
ti X7+ gMSA(LN(XT) 2 Rd (AS0) and (16) are modi ed as
X" =G+ { MLP(LN(GY)) 2 RY P: (A51)

K= «(X)= WKLN(X)2RY P: (A52)

This is similar to [29, 92], only here the parameters are _ _ ] d n
learnable rather than obtained by GAP. Similarly, stage two vV = v (X)= LN(X) minLN(X) 2 R™ "1 (AS3)



As shown in Table 10, it is our choice in terms of simplic-
ity, performance, and attention map quality to apply Layer-
Norm to key and value and linear layers to query and key.
The learnable parameters ai&, andWy .

In summary, SimPool is a non-iterative instance of 0
pooling framework withk = 1, u® = A(X) 2 RY,
query mapping q(u) = Wou 2 RY, key map-
ping «k (X) = Wk LN(X) 2 RY P, pairwise simi-
larity functionﬁQ(;y) = Xx’y, spatial attentiora =
h(s) = 2(s= d) 2 RP, value mapping v (X) =
LN(X) minLN(X) 2 RY P, average pooling func-
tionf = f and output mappingy =id .

A3. More experiments
A3.1. More datasets, networks and protocols

Downstream tasks For image classication we use
CIFAR-10 [40], CIFAR-100 [40] and Oxford Flowers [58].
CIFAR-10 consists of 60,000 images in 10 classes, with
6,000 images per class. CIFAR-100 is just like CIFAR-10,

except it has 100 classes containing 600 images each. Ox-

ford Flowers consists of 102 ower categories containing
between 40 and 258 images each.

For semantic segmentatiome ne-tune a linear layer
of a self-supervised ViT-S on ADE20K [102], measuring
mloU, mAcc, and aAcc. The training set consists of 20k
images and the validation set of 2k images in 150 classes.

For background changeswve use the linear head and
linear probe of a supervised and self-supervised ViT-S,
respectively, measuring top-1 classi cation accuracy on
ImageNet-1k-9 [95] (IN-9) dataset. IN-9 contains nine
coarse-grained classes with seven variations of both bac
ground and foreground.

For image retrieval we extract features from a self-

supervised ResNet-50 and ViT-S and evaluate them on

R Oxford andR Paris [68], measuring mAP. These are the
revisited Oxford [64] and Paris [65] datasets, comprising
5,062 and 6,412 images collected from Flickr by searching
for Oxford and Paris landmarks respectively.

For ne-grained classi cation we extract features from

DATASET CUB200 rRs196 SOP N-SHoP
Objects birds cars furniture clothes
# classes 200 196 22634  7.982

# train images 5; 894 8 092 60 026 26 356
#testimages 5;894 8093 60027 26356

Table Al.Statistics and setting®r the four ne-grained classi -
cation datasets.

VOC12 comprises 11,530 images depicting 27,450 anno-
tated objects.

Ablation  For the ablation of subsection A3.4, we train su-
pervised ResNet-18 and ViT-T famage classi cationon
ImageNet-20% and ImageNet-1k respectively.

A3.2. Implementation details

Analysis We train ResNet-18 on ImageNet-20% for 100
epochs following the ResNet-50 recipe of [91], but with
learning rated:1. We train on 4 GPUs with a global batch
size of4 128 = 512 using SGD [71] with momentum.
We incorporate pooling methods as a layer at the end of the
model.

Group 1 For HOW [78], we use a kernel of size 3 and
do not perform dimension reduction. For LSE [66], we ini-
tialize the scale as = 10. For GeM [69], we use a kernel
of size 7 and initialize the exponentps 2.

Group 2 Fork-means, OTK [53] and slot attention [49],
we setk = 3 vectors and take the maximum of the three
logits per class. For convergence, we set tolerarrc®:01
and iterationsl = 5 for k-means. We set the iterations to
T = 3 for OTK and slot attention.

Group 3 For CBAM [92], we use a kernel of size 7. For

k_SE[ ] and GE [28], we follow the implementation of [91].

Group 4 For ViT [18] and CaiT [80] we usen = 4
heads. For CaiT we set the iterationsTto= 1, as this
performs best.

Benchmark For supervised pre-training, we train
ResNet-50 for 100 and 200 epochs, ConvNeXt-S and ViT-S
for 100 and 300 epochs and ViT-B for 100 epochs on
ImageNet-1k. For ResNet-50 we follow [91], using SGD
with momentum with learning ra@&4. We train on 8 GPUs

a supervised and self-supervised ResNet-50 and ViT-S andvith global batch siz88 128 = 1024 For ConvNeXt-S

evaluate them on Caltech-UCSD Birds (CUB200) [86],
Stanford Cars (CARS196) [39], In-Shop Clothing Retrieval
(In-Shop) [46] and Stanford Online Products (SOP) [60],
measuring Revall®@. Dataset statistics are summarized in
Table Al.

For unsupervised object discovemye use VOCO7 [20]
trainval, VOC12 [21] trainval and COCO 20K [44, 85]. The
latter is a subset of COCO2014 trainval dataset [44], com-
prising 19,817 randomly selected images. VOCO07 com-

we follow [47], using AdamW [50] with learning rate
0:004 We use 8 GPUs with an aggregation factor of 4
(backpropagating every 4 iterations), thus with global batch
size8 4 256 = 4096 For ViT-S we follow [91], using
AdamW with learning rat& 10 *. We train on 8 GPUs
with global batch siz8 74 = 592. For the 300 epoch
experiments, we follow the same setup as for 100.

For self-supervisedpre-training, we train ResNet-50,
ConvNeXt-S and ViT-S with DINO [8] on ImageNet-1k for

prises 9,963 images depicting 24,640 annotated objects100 and 300 epochs, following [8] and using 6 local crops.



For ResNet-50, we train on 8 GPUs with global batch size M E VIT-S
8 160 = 1280 We use learning rat@&3, minimum learn- ETHOD EPOCHS

. k-NN Pi

ing rate0:0048 global crop scal§0:14; 1:0] and local crop _ ROB
scale[0:05; 0:14]. For ConvNeXt-S, we train on 8 GPUs Baseline ~ 300 722 743
with global batch siz8 60 = 480. We use learning rate SimPool 300 726 750

0:001, minimum learning rat® 10 ©, global crop scale  Table A2.Image classi cationtop-1 accuracy (%) on ImageNet-
[0:14; 1:0] and local crop scal§0:05; 0:14]. As far as we 1k. Self-supervised pre-training with DINO [8] for 300 epochs.
know, we are the rst to integrate DINO into ConvNeXt- Baseline: GAP for convolutionagLs for transformers.

S. For ViT-S, we train on 8 GPUs with global batch size

8 100 = 800. We use LARS [96] with learning rate METHOD MIoU MAcc AAcc
5 10 4, minimum learning rate of 10 ®, global crop Baselne 264 340 716
scale[0:25; 1:0] and local crop scal§0:05; 0:25]. For the SimPool 279 357 72.6

300 epoch experiments, we follow the same setup as for

. . . . Table A3.Semantic segmentatimn ADE20K [102]. ViT-S pre-
100. For Ilnea_r probing, Xve follow [£], using 4 GPUs with trained on ImageNet-1k for 100 epochs. Self-supervision with
global batch sizd 256 = 1024 DINO [4]

Downstream tasks For image classication we ne-
tune supervised and self-supervised ViT-S on CIFAR-10, R OXEORD R PARIS
CIFAR-100 and Oxford Flowers, following [103]. We use =~ NETWORK METHOD
a learning of7:5 10 6. We train on 8 GPUS for 1000

MEDIUM HARD‘MEDIUM HARD

epochs with a global batch size®f 96 = 768. ResNet.50 Baseline  27.2 7-9‘ 473  19.0

For object localization we use the supervised and self- SimPool  29.7 87 | 516 230
supervised ViT-S on CUB and ImageNet-1k, without ne- VTS Baseline  29.4 10.% 546  26.2
tuning. We follow [11] and we use the MaxBoxAccV2 met- SimPool 321 106 | 565 27.3

ric. For the baseline, we use the mean attention map OVefrpie g, Image retrieval MAP (%) without ne-tuning on
all heads of theLs token to generate the bounding boxes. g oxford and R Paris [68].  Self-supervised pre-training with
For SimPool, we use the attention magl5). DINO [£] on ImageNet-1k for 100 epochs.

For unsupervised object discoverye use the self-
supervised ViT-S on VOCO07 [20] trainval, VOC12 [21]
trainval and COCO 20K [44, 85], without ne-tuning. We shows that SimPool improves over the baseline by k4%
adopt LOST [73] and DINO-seg [73, 8] to extract bound- NN and 0.7% linear probing.

ing boxes. For both methods, we follow the best default Semantic segmentation We evaluate semantic segmenta-

choices [73]. LOST operates on features. \We use the the;,, on ADE20K [102] under self-supervised pre-training.
keysof the last self-attention layer for the baseline and the To evaluate the quality of the learned representation, we

keysK (14) for SimPool. DINO-seg operates on attention only ne-tune a linear layer on top of the xed patch fea-
maps. We use the attention map of the head that achieveg, s asin iBOT [103]. Table A3 shows that SimPool in-

the best results following [73],e. head 4, for the baseline 04565 all scores by more than 1% over the baseline. These

and the attention map (15) for SimPool. _ results testify the improved quality of the learned represen-
For semantic segmentatipmwe use the self-supervised i iions when pre-training with SimPool

ViT-S on ADE20K [102]. To evaluate the quality of the

learned representation, we only ne-tune a linear layer on Background changes Deep neural networks often rely on
top of the xed patch features, without multi-scale train- the image background, which can limit their ability to gen-
ing or testing and with the same hyper-parameters as ineralize well. To achieve better performance, these models
iBOT [103]. We follow the setup of [45]j.e., we train must be able to cope with changes in the background and

for 160,000 iterations witt612 512 images. We use Prioritize the foreground. To evaluate SimPool robustness

AdamW [50] optimizer with initial learning rat8 10 °, to the background changes, we use the ImageNet-1k-9 [95]
poly-scheduling and weight decay of 0.05. We train on 4 (IN-9) dataset. In four of these datasets,, Only-FG (OF),
GPUS with a global batch size df 4 = 16. Mixed-Same (MS), Mixed-Rand (MR), and Mixed-Next

Forcomputation resourcesve measure GFLOPS for in- (MN), the baCkgrOUnd is modi ed. The three other datasets
put size224 2240n a single NVIDIA A100 40GB GPU.  feature masked foregroundss., No-FG (NF), Only-BG-B
(OBB), and Only-BG-T (OBT).
A3.3. More benchmarks

Image retrieval without ne-tuning  While classi cation
Self-supervised pre-training On the 100% of ImageNet- accuracy indicates ability of a model to recognize objects of
1k, we train ViT-S with DINO [8] for 300 epochs. Table A2 the same classes as those it was trained for, it does not nec-



sl e ResNet18] | 64.2 A3.5. More visualizations

‘O'.'i —e— VIT-T . . . .
g 64 & Attenthn maps: VIT Flgur_e A2 s_hows a_ttennon maps of
8 se5(- 1 eas >; superwseq and seIf-;uperwsed ViT-S trained on I.mageNet-
= 3 1k. The VIiT-S baseline uses ttm. s token for pooling by
§ sl — 63.6 g default. For SimPool, we remove tlte s stream entirely
8 634 from the encoder and use the attention ragf5).

s5.5] | | | | | We observe that undeself-supervision the attention

1 > 3 4 5 032 map quality of SimPool is on par with the baseline and
in some cases the object of interest is slightly more pro-

. — nouncedge.g, rows 1, 3,6 and 7.
Figure Al.Image classi cationtop-1 accuracy (%Yys exponent ’ ) o . o .
=(1  )=2(17) for ResNet-18 supervised on ImageNet-20%  What is more impressive supervisedraining. In this
and ViT-T supervised on ImageNet-1k, both for 100 epochs. case, the baseline has very low quality of attention maps, fo-

cusing only on part of the object of interestd, rows 1, 2,

5, 6, 10), focusing on background more than self-supervised
essarily re ect its ability to capture the visual similarity be- (e.g, rows 1, 4, 6, 7, 8), even missing the object of interest
tween images, when tested on a dataset from a different disentirely €.g, rows 3, 9). By contrast, the quality of atten-
tribution. Here, we evaluate this property of visual features tion maps of SimPool is superior even to self-supervised,
using ResNet-50 and ViT-S; for particular object retrieval attending more to the object surface and less background.
without ne-tuning onR Oxford andR Paris [68]. In Ta-
ble A4, we observe that SimPool is very effective, improv-
ing the retrieval performance of both models on all datasets
and evaluation protocols over the baseline.

Segmentation masks Figure A3 shows the same images
for the same setting as in Figure A2, but this time overlays
segmenation masks on top input images, corresponding to
more than 60% mass of the attention map. Again, Sim-
Fine-grained classi cation We evaluate ne-grained Pool is on par with baseline when self-supervised, super-
classi cation using ResNet-50 and ViT-S, both supervised vised baseline has poor quality and supervised SimPool is a
and self-supervised, following [36]. We extract features lot better, although its superiority is not as evident as with
from test set images and directly apply nearest neighborthe raw attention maps.

search, measuring Recalk@ Table A5 shows that Sim- . o . . . . .
. ; - Object localization Figure A4 visualizes object localiza-
Pool is superior to the baseline in most of the datasets, mod-. . . : .
- . . . tion results, comparing bounding boxes of SimPool with the
els and supervision settings, with the exception of ResNet- X . :
! . baseline. The results are obtained from the experiments of
50 supervised on In-Shop, ResNet-50 self-supervised o

Cars196 and ViT-S self-supervised on SOP (3 out of 16nTabIe 5, using VIT-S with supervised pre-training. We ob-
serve that the baseline systematically fails to localize the

. . oo .
cases). The |mprovement is roughly 1-2% Recall@l n objects accurately. On the other hand, SimPool allows rea-
most cases, and is most pronounced on self-supervised on

CUB200. roughly 5% sonable localization of the object of interest just from the at-
, rougnly 5%. tention map, without any supervision other than the image-
A3.4. More ablations level label.

Pooling parameter (17) We ablate the effect of param- Attez\t(ison' malps: :]— he ﬁe ffethOf Figu_re 1A > an(izFi?—
eter of the pooling functiorf  (17) on the classi cation ure AG visualize the effect of exponent= ( .)_ 0
performance of SimPool using ResNet-18 on ImageNet- pooling operatiori  (8) on the quality of the attention maps
20% and ViT-T on ImageNet-1k for 100 epochs. We nd of ResNet-18 and ViT-T, respectively. The use of the aver-
learnable (or =(1 )=2) to be inferior both in terms age pooling operatiof , as opposed tb (8) is referred

of performance and attention map quality. For ResNet-18 to as no. - For ResNet-lS, we observe that f.OK %:.25
on ImageNet-20%, it gives top-1 accuraig0%. Clamp- ro> 3.0, the a_ttentlor_1 maps are of low quality, fa_llm_g to
ingto =5 gives56:3% and using &0 smaller learning delmez_ate the_object of mt_eresi.g, rows 4, 5, 11), missing
rate gives56:5%. the object of interest partiallye(g, rows 1, 2, 3, 6) or even

entirely €.g, row 7). For ViT-T, it is impressive that for
around or equal to 1.25, the attention map quality is high,
attending mored.g, rows 1, 2, 4, 7) or even exclusively
(e.g, rows 3, 6, 11) the object instead of background.

In Figure A1, we set exponentto be a hyperparameter
and observe that for both networks, values betweamd
3 are relatively stable. Speci cally, the best choiceifor
ResNet-18 and:25 for ViT-T. Thus, we choose exponent
2 for convolutional networks (ResNet-18, ResNet-50 and Attention maps: cLS vs. SimPool Figure A7 compares
ConvNeXt-S) and.:25for vision transformers (ViT-T, ViT- the quality of the attention maps of supervised ViT-T trained
S and ViT-B). with cLs to that of SimPool. ForcLs, we visualize the



CUB200 CARS196 SoP NHSHOP
R@1 2 4 |R@1 2 4 |R@1 10 100|R@1 10 20

SUPERVISED

NETWORK METHOD

ResNet-50 Baseline 427 55.2 67.7 423 542 657 483 632 718 276 499 565
SimPool 43.0 55.2 67.9| 43.8 56.2 67.4| 48.7 64.1 729| 27.0 49.9 56.5
VIT-S Baseline 55.8 683 788382 503 618 541 69.2 816 30.9 56.5 632
SimPool 56.8 69.6 79.2| 38.9 50.7 63.3| 54.2 69.4 81.9| 328 57.6 64.3
SELF-SUPERVISED
ResNet-50 Baseline 26.0 36.2 46.934.1 442 550 512 653 76.5 37.1 584 64.1
SimPool 30.7 40.9 53.3| 336 436 54.3| 521 66.5 77.2| 38.1 60.0 65.6
VIT-S Baseline 56.7 69.4 80.5375 475 584 59.8 744 854 404 639 70.3
SimPool 61.8 744 83.6| 37.6 48.0 58.4| 59.5 739 85.0| 41.1 643 70.8

Table A5.Fine-grained classi catiorRecall@ (R@k, %) without ne-tuning on four datasets, following the same protocol as [55, 36].
Models pre-trained on ImageNet-1k for 100 epochs. Self-supervision with DINO [8].

mean attention map of the heads of thes token for each of
the 12 blocks. For SimPool, we visualize the attention map
a (15). SimPool has attention maps of consistently higher
quality, delineating and exclusively focusing on the object
of interest é.g, rows 6, 10, 13). It is impressive that while
cLS interacts with patch tokens in 12 different blocks, it is
inferior to SimPool, which interacts only once at the end.

Attention maps: ResNet, ConvNeXt Figure A8 and
Figure A9 show attention maps of supervised and self-
supervised ResNet-50 and ConvNeXt-S, respectively. Both
networks are pre-trained on ImageNet-1k for 100 epochs.
We use the attention mag (15). We observe that Sim-
Pool enables the default ResNet-50 and ConvNeXt-S to ob-
tain raw attention maps of high quality, focusing on the
object of interest and not on background or other objects.
This is not possible with the default global average pooling
and is a property commonly thought of vision transform-
ers when self-supervised [8]. Between supervised and self-
supervised SimPool, the quality differences are small, with
self-supervised being slightly superior.



input supervised supervised DINO [8] DINO [8]
image CLS SimPool CcLS SimPool

Figure A2.Attention map®f VIiT-S [18] trained on ImageNet-1k for 100 epochs under supervision and self-supervision with DINO [8].
For ViT-S baseline, we use the mean attention map oftletoken. For SimPool, we use the attention nagd5). Input image resolution:
896 896 patches16 16; output attention maB6 56.






