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A1. Extended related work

Spatial pooling of visual input is the process by which
spatial resolution is reduced to 1 × 1, such that the input is
mapped to a single vector. This process can be gradual and
interleaved with mapping to a feature space, because any
feature space is amenable to smoothing or downsampling.
The objective is robustness to deformation while preserving
important visual information.

Via a similarity function, e.g. dot product, the vector rep-
resentation of an image can be used for efficient matching to
class representations for category-level tasks or to the rep-
resentation of another image for instance-level tasks. One
may obtain more than one vectors per image as a represen-
tation, but this requires a particular kernel for matching.

Background The study of receptive fields in neuro-
science [15] lead to the development of 2D Gabor fil-
ters [16] as a model of the first processing layer in the visual
cortex. Visual descriptors based on filter banks in the fre-
quency domain [61] and orientation histograms [51, 14] can
be seen as efficient implementations of the same idea. Apart
from mapping to a new space—that of filter responses or
orientation bins—they involve a form of smoothing, at least
in some orientation, and weighted local spatial pooling.

Textons [17] can be seen as a second layer, originally
studied in the context of texture discrimination [81] and seg-
mentation [17, 52] and taking the form of multidimensional
histograms on Gabor filter responses. The bag of words
model [75, 12] is based on the same idea, as a histogram
on other visual descriptors. Again, apart from mapping to
a new space—that of textons or visual words—they involve
local or global spatial pooling.

Histograms and every step of building visual features can
be seen as a form of nonlinear coding followed by pool-
ing [5]. Coding is maybe the most important factor. For
example, a high-dimensional mapping before pooling, op-
tionally followed by dimension reduction after pooling, can
reduce interference between elements [62, 35, 4]. Weighting

of individual elements is also important in attending impor-
tant regions [25, 34, 76] and in preventing certain elements
from dominating others [32, 54, 33].

The pooling operation itself is any symmetric
(permutation-invariant) set function, which can be ex-
pressed in the form F (X) = g

(∑
x∈X f(x)

)
[98]. The

most common is average and maximum [72, 6, 5].
Common ways to obtain a representation of multiple vec-

tors are using a spatial partition [25] or a partition in the
feature space [31, 77].

Convolutional networks Following findings of neuro-
science, early convolutional networks [22, 42] are based on
learnable convolutional layers interleaved with fixed spatial
pooling layers that downsample, which is an instance of the
coding-pooling framework. The same design remains until
today [41, 74, 26, 47]. Again, apart from mapping to a new
space, convolutional layers involve a form of weighted lo-
cal pooling. Again, the operation in pooling layers is com-
monly average [42] or maximum [72, 41].

Early networks end in a fully-connected layer over a fea-
ture tensor of low resolution [42, 41, 74]. This evolved
into spatial pooling, e.g. global average pooling (GAP) for
classification [43, 26], regional pooling for detection [23],
or global maximum followed by a pairwise loss [79] for
instance-level tasks. This is beneficial for downstream tasks
and interpretability [101].

The spatial pooling operation at the end of the network
is widely studied in instance level-tasks [2, 79, 69], giv-
ing rise to forms of spatial attention [37, 59, 7, 78, 57],
In category-level tasks, it is more common to study feature
re-weighting as components of the architecture [29, 92, 28].
The two are closely related because e.g. the weighted av-
erage is element-wise weighting followed by sum. Most
modern pooling operations are learnable.

Pooling can be spatial [28, 59, 7, 78, 57], over chan-
nels [29], or both [37, 92]. CBAM [92] is particularly re-
lated to our work in the sense that it includes global average



pooling followed by a form of spatial attention, although
the latter is not evident in its original formulation and al-
though CBAM is designed as a feature re-weighting rather
than pooling mechanism.

One may obtain a representation of multiple vectors e.g.
by some form of clustering [30] or optimal transport [53].

Vision transformers Pairwise interactions between fea-
tures are forms of self-attention that can be seen as alterna-
tives to convolution or forms of pooling. They have com-
monly been designed as architectural components of con-
volutional networks, again over the spatial [90, 3, 100, 67]
or the channel dimensions [9, 87]. Originating in language
models [83], vision transformers [18] streamlined these ap-
proaches and became the dominant competitors of convolu-
tional networks.

Transformers commonly downsample only at the input,
forming spatial patch tokens. Pooling is based on a learn-
able CLS (“classification”) token, which, beginning at the
input space, undergoes the same self-attention operation
with patch tokens and eventually provides a global image
representation. That is, the network ends in global weighted
average pooling, using as weights the attention of CLS over
the patch tokens. Pooling is still gradual, since CLS interacts
with patch tokens throughout the network depth.

Several variants of transformers often bring back ideas
from convolutional networks, including spatial hierar-
chy [45], relative position encoding [94, 24], re-introducing
convolution [93, 19], re-introducing pooling layers [27, 45,
88, 89], or simple pooling instead of attention [97]. In this
sense, downsampling may occur inside the transformer, e.g.
for classification [27, 45] or detection [88, 89].

Few works that have studied anything other than CLS
for pooling in transformers are mostly limited to GAP [45,
99, 82, 70]. CLS offers attention maps for free, but those
are typically of low quality unless in a self-supervised set-
ting [8], which is not well studied. Few works that attempt
to rectify this in the supervised setting include a spatial en-
tropy loss [63], shape distillation from convolutional net-
works [56] and skipping computation of self-attention, ob-
serving that the quality of self-attention is still good at in-
termediate layers [84]. It has also been found beneficial to
inject the CLS token only at the last few layers [80].

We are thus motivated to question why the pooling oper-
ation at the end of the network needs to be different in con-
volutional networks and vision transformers and why pool-
ing with a CLS token needs to be performed across the net-
work depth. We study pooling in both kinds of networks, in
supervised and self-supervised settings alike. We derive a
simple, attention-based, universal pooling mechanism that
applies equally to all cases, improving both performance
and the quality of attention maps.

A2. More on the method

In subsection A2.1, we summarize the generalized pool-
ing framework of subsection 3.1. We then detail how to
formulate methods studied in subsection 3.2 as instances of
our pooling framework so as to obtain Table 1, examining
them in groups as in subsection 3.2. Finally, we summarize
SimPool in subsection A2.6.

Notation By id we denote the identity mapping. Given
n ∈ N, we define [n] := {1, . . . , n}. By 1A we denote the
indicator function of set A, by δij the Kronecker delta and
by [P ] the Iverson bracket of statement P . By A ◦ B we
denote the Hadamard product of matrices A,B and by A◦n

the Hadamard n-th power of A. We recall that by η1, η2 we
denote the row-wise and column-wise ℓ1-normalization of
a matrix, respectively, while σ2 is column-wise softmax.

Algorithm 1: Our generalized pooling framework.
input : p: #patches, d: dimension
input : X ∈ Rd×p: features
option: k: #pooled vectors
option: INIT: pooling initialization
option: T : #iterations
option: {ϕtQ}, {ϕtK}: query, key mappings
option: s: pairwise similarity function
option: h: attention function
option: {ϕtV }: value mapping
option: f : pooling function
option: {ϕtX}, {ϕtU}: output mappings
output: d′: output dimension
output: U ∈ Rd′×k: pooled vectors

1 d0 ← d ▷ input dimension
2 X0 ← X ∈ Rd0×k ▷ initialize features
3 U0 ← INIT(X) ∈ Rd0×k ▷ initialize pooling
4 for t = 0, . . . , T − 1 do
5 Q← ϕtQ(U

t) ∈ Rnt×k ▷ query (1)
6 K ← ϕtK(Xt) ∈ Rnt×p ▷ key (2)
7 S ← 0p×k ▷ pairwise similarity
8 for i ∈ [p], j ∈ [k] do
9 sij ← s(k i,q j)

10 A← h(S) ∈ Rp×k ▷ attention (3)
11 V ← ϕtV (X

t) ∈ Rnt×p ▷ value (4)
12 Z ← f−1(f(V )A) ∈ Rnt×k ▷ pooling (5)
13 Xt+1 ← ϕtX(Xt) ∈ Rdt+1×p ▷ update feat. (6)
14 U t+1 ← ϕtU (Z) ∈ Rdt+1×k ▷ update pool. (7)

15 d′ ← dT ▷ output dimension
16 U ← UT ▷ pooled vectors



A2.1. Pooling framework summary

Our generalized pooling framework is summarized in al-
gorithm 1. As input, it takes the features X ∈ Rd×p, rep-
resenting p patch embeddings of dimension d. As output, it
returns the pooled vectors U ∈ Rd′×k, that is, k vectors of
dimension d′. As options, it takes the number k of vectors
to pool; the pooling initialization function INIT; the number
T of iterations; the query and key mappings {ϕtQ}, {ϕtK};
the pairwise similarity function s; the attention function h;
the value mapping {ϕtV }; the pooling function f ; and the
output mappings {ϕtX}, {ϕtU}.

The mappings and dimensions within iterations may be
different at each iteration, and all optional functions may
be learnable. As such, the algorithm is general enough to
incorporate any deep neural network. However, the focus is
on pooling, as is evident by the pairwise similarity between
queries (pooled vectors) and keys (features) in line 9, which
is a form of cross-attention.

A2.2. Group 1: Simple methods with k = 1

These methods are non-iterative, there are no query Q,
key K, similarity matrix S or function h, and the attention
is a vector a ∈ Rp that is either fixed or a function directly
of X . With the exception of HOW [78], the value matrix is
V = X , that is, ϕV = id, and we are pooling into vector
u = z ∈ Rd, that is, ϕU = id. Then, (5) takes the form

u = f−1(f(X)a) ∈ Rd, (A1)

and we focus on instantiating it to identify function f and
attention vector a. With the exception of LSE [66], function
f is fα (8) and we seek to identify α.

Global average pooling (GAP) [43, 26] According
to (9),

πA(X) :=
1

p

p∑
j=1

x j = X1p/p = f−1
−1 (f−1(X)a), (A2)

where f−1(x) = x
1−(−1)

2 = x, thus f−1 = id, and a =
1p/p.

Max pooling [79] Assuming X ≥ 0,

πmax(X) := max
j∈[p]

x j = lim
γ→∞

 p∑
j=1

xγ
j

 1
γ

(A3)

= lim
γ→∞

(Xγ1p)
1
γ = f−1

−∞(f−∞(X)a), (A4)

where all operations are taken element-wise and a = 1p.

Generalized mean (GeM) [69] Assuming X ≥ 0,

πGEM(X) :=

1

p

p∑
j=1

xγ
j

 1
γ

(A5)

= (Xγ1p/p)
1
γ = f−1

α (fα(X)a), (A6)

where all operations are taken element-wise, γ = (1−α)/2
is a learnable parameter and a = 1p/p.

SimPool has the same pooling function but is based on
an attention mechanism.

Log-sum-exp (LSE) [66]

πLSE(X) :=
1

r
log

1

p

p∑
j=1

exp(rx j)

 (A7)

= f−1(f(X)a), (A8)

where all operations are taken element-wise, r is a learnable
scale parameter, f(x) = erx and a = 1p/p.

HOW [78] The attention value of each feature x j is its
norm ∥x j∥. That is,

a = (∥x 1∥, . . . , ∥x p∥)⊤ = (X◦2)⊤1d (A9)

= diag(X⊤X) ∈ Rp, (A10)

obtained by pooling over channels. The value matrix is

V = ϕV (X) = FC(avg3(X)) ∈ Rd′×p, (A11)

where avg3 is 3 × 3 local average pooling, FC is a fixed
fully-connected (1 × 1 convolutional) layer incorporating
centering, PCA dimension reduction and whitening accord-
ing to the statistics of the local features of the training set
and d′ < d is the output dimension. Then,

z =

p∑
j=1

ajv j = V a = f−1
−1 (f−1(V )a) ∈ Rd′

, (A12)

where f−1 = id as in GAP. Finally, the output is u = η2(z),
where the mapping ϕU = η2 is ℓ2-normalization.

A2.3. Group 2: Iterative methods with k > 1

We examine three methods, which, given X ∈ Rd×p

and k < p, seek U ∈ Rd×k by iteratively optimizing a
kind of assignment between columns of X and U . The lat-
ter are called references [53], centroids [48], or slots [49].
Assignment can be soft [53, 49] or hard [48]. It can be an
assignment of columns of X to columns of U [48, 49] or
both ways [53]. The algorithm may contain learnable com-
ponents [53, 49] or not [48].



Optimal transport kernel embedding (OTK) [53] Pool-
ing is based on a learnable parameter U ∈ Rd×k. We define
the p × k cost matrix C = (cij) consisting of the pairwise
squared Euclidean distances between columns of X and U ,
i.e., cij = ∥x i − u j∥2. We seek a p × k non-negative
transportation plan matrix P ∈ P representing a joint prob-
ability distribution over features of X and U with uniform
marginals:

P := {P ∈ Rp×k
+ : P1k = 1p/p, P

⊤1p = 1k/k}.
(A13)

The objective is to minimize the expected, under P , pair-
wise cost with entropic regularization

P ∗ := arg min
P∈P
⟨P,C⟩ − ϵH(P ), (A14)

where H(P ) = −1⊤
p (P ◦ logP )1k is the entropy of

P , ⟨·, ·⟩ is the Frobenius inner product and ϵ > 0 con-
trols the sparsity of P . The optimal solution is P ∗ =
SINKHORN(e−C/ϵ), where exponentiation is element-wise
and SINKHORN is the Sinkhorn-Knopp algorithm [38],
which iteratively ℓ1-normalizes rows and columns of a ma-
trix until convergence [13]. Finally, pooling is defined as

U = ψ(X)P ∗ ∈ Rd′×k, (A15)

where ψ(X) ∈ Rd′×p and ψ : Rd → Rd′
is a Nyström

approximation of a kernel embedding in Rd, e.g. a Gaussian
kernel [53], which applies column-wise to X ∈ Rd×p.

We conclude that OTK [53] is a instance of our pooling
framework with learnable U0 = U ∈ Rd×k, query/key
mappings ϕQ = ϕK = id, pairwise similarity function
s(x,y) = −∥x− y∥2, attention matrix A = h(S) =
SINKHORN(eS/ϵ) ∈ Rp×k, value mapping ϕV = ψ,
average pooling function f = f−1 and output mapping
ϕU = id.

Although OTK is not formally iterative in our frame-
work, SINKHORN internally iterates indeed to find a soft-
assignment between the features of X and U .

k-means [48] k-means aims to find a d×k matrix U min-
imizing the sum of squared Euclidean distances of each col-
umn x i of X to its nearest column u j of U :

J(U) :=

p∑
i=1

min
j∈[k]
∥x i − u j∥2 . (A16)

Observe that (10) is the special case k = 1, where the
unique minimum u∗ = πA(X) is found in closed form (11).
For k > 1, the distortion measure J is non-convex and we
are only looking for a local minimum.

The standard k-means algorithm is initialized by a d× k
matrix U0 whose columns are k of the columns of X
sampled at random and represent a set of k centroids in
Rd. Given U t at iteration t, we define the p × k dis-
tance matrix D = (dij) consisting of the pairwise squared
Euclidean distances between columns of X and U t, i.e.,
dij =

∥∥x i − ut
j

∥∥2. For i ∈ [p], feature x i is assigned
to the nearest centroid ut

j with index

ci = arg min
j∈[k]

dij , (A17)

where ties are resolved to the lowest index. Then, at itera-
tion t + 1, centroid ut

j is updated as the mean of features
x i assigned to it, i.e., for which ci = j:

ut+1
j =

1∑p
i=1 δcij

p∑
i=1

δcijx i. (A18)

Let argmin1(D) be the p× k matrix M = (mij) with

mij = δcij =
[
j = argminj′∈[k]dij′

]
. (A19)

That is, each row di ∈ Rk of D yields a row mi ∈ {0, 1}k
of M that is an one-hot vector indicating the minimal el-
ement over di. Define operator argmax1 accordingly.
Then, (A18) can be written in matrix form as

U t+1 = Xη2(argmax1(−D)) ∈ Rd×k. (A20)

We conclude that k-means is an iterative instance of
our pooling framework with the columns of U0 ∈
Rd×k sampled at random from the columns of X ,
query/key mappings ϕQ = ϕK = id, pairwise simi-
larity function s(x,y) = −∥x− y∥2, attention matrix
A = h(S) = η2(argmax1(S)) ∈ Rp×k, value map-
ping ϕV = id, average pooling function f = f−1 and
output mappings ϕX = ϕU = id.

Slot attention [49] Pooling is initialized by a random d′×
k matrix U0 sampled from a normal distribution N (µ, σ2)
with shared, learnable mean µ ∈ Rd′

and standard deviation
σ ∈ Rd′

. Given U t at iteration t, define the query Q =
WQLN(U t) ∈ Rn×k and key K = WKLN(X) ∈ Rn×p,
where LN is LayerNorm [1] and n is a common dimension.
An attention matrix is defined as

A = η1(σ2(K
⊤Q/
√
n)) ∈ Rp×k. (A21)

Then, with value V = WV LN(X) ∈ Rn×p, pooling is de-
fined as the weighted average

Z = V A ∈ Rn×k. (A22)



Finally, U t is updated according to

G = GRU(Z) ∈ Rd′×k (A23)

U t+1 = G+ MLP(LN(G)) ∈ Rd′×k, (A24)

where GRU is a gated recurrent unit [10] and MLP a multi-
layer perceptron with ReLU activation and a residual con-
nection [49].

We now simplify the above formulation by removing
LayerNorm and residual connections.

We conclude that slot attention [49] is an iterative in-
stance of our pooling framework with U0 a random
d′ × k matrix sampled from N (µ, σ2) with learnable
parameters µ, σ ∈ Rd′

, query mapping ϕQ(U) =
WQU ∈ Rn×k, key mapping ϕK(X) = WKX ∈
Rn×p, pairwise similarity function s(x,y) = x⊤y, at-
tention matrix A = h(S) = η1(σ2(S/

√
n)) ∈ Rp×k,

value mapping ϕV (X) = WVX ∈ Rn×p, average
pooling function f = f−1, output mapping ϕU (Z) =
MLP(GRU(Z)) ∈ Rd′×k and output dimension d′.

SimPool is similar in its attention mechanism, but is non-
iterative with k = 1 and initialized by GAP.

A2.4. Group 3: Feature re-weighting, k = 1

We examine two methods, originally proposed as com-
ponents of the architecture, which use attention mechanisms
to re-weight features in the channel or the spatial dimension.
We modify them by placing at the end of the network, fol-
lowed by GAP. We thus reveal that they serve as attention-
based pooling. This includes pairwise interaction, although
this was not evident in their original formulation.

Squeeze-and-excitation block (SE) [29] The squeeze
operation aims to mitigate the limited receptive field of con-
volutional networks, especially in the lower layers. It uses
global average pooling over the spatial dimension,

u0 = πA(X) ∈ Rd. (A25)

Then, the excitation operation aims at capturing channel-
wise dependencies and involves two steps. In the first step,
a learnable gating mechanism forms a vector

q = σ(MLP(u0)) ∈ Rd, (A26)

where σ is the sigmoid function and MLP concists of two
linear layers with ReLU activation in-between and forming
a bottlenect of hidden dimension d/r. This vector expresses
an importance of each channel that is not mutually exclu-
sive. The second step re-scales each channel (row) of X by
the corresponding element of q,

V = diag(q)X ∈ Rd×p. (A27)

The output X ′ = V ∈ Rd×p is a new tensor of the same
shape as X , which can be used in the next layer. In this
sense, the entire process is considered a block to be used
within the architecture of convolutional networks at sev-
eral layers. This yields a new family of networks, called
squeeze-and-excitation networks (SENet).

However, we can also see it as a pooling process if we
perform it at the end of a network, followed by GAP:

z = πA(V ) = diag(q)X1p/p ∈ Rd, (A28)

We conclude that this modified SE block is a non-
iterative instance of our pooling framework with u0 =
πA(X) ∈ Rd, query mapping ϕQ(u) = σ(MLP(u)) ∈
Rd, no key K, similarity matrix S of function h,
uniform spatial attention a = 1p/p, value mapping
ϕV (X) = diag(q)X ∈ Rd×p and average pooling
function f = f−1.

The original design does not use a or z; instead, it has an
output mapping ϕX(X) = V = diag(q)X ∈ Rd×p. Thus,
it can be used iteratively along with other mappings of X to
form a modified network architecture.

Convolutional block attention module (CBAM) [92]
This is an extension of SE [29] that acts on both the channel
and spatial dimension in similar ways. Channel attention is
similar to SE: It involves (a) global average and maximum
pooling of X over the spatial dimension,

U0 = (πA(X) πmax(X)) ∈ Rd×2; (A29)

(b) a learnable gating mechanism forming vector

q = σ(MLP(U0)12/2) ∈ Rd, (A30)

which is defined as in SE [29] but includes averaging over
the two columns before σ; and (c) re-scaling channels
(rows) of X by q,

V = diag(q)X ∈ Rd×p. (A31)

Spatial attention performs a similar operation in the spa-
tial dimension: (a) global average and maximum pooling of
V over the channel dimension,

S = (πA(V
⊤) πmax(V

⊤)) ∈ Rp×2; (A32)

(b) a learnable gating mechanism forming vector

a = σ(conv7(S)) ∈ Rp, (A33)

where conv7 is a a convolutional layer with kernel size 7×7;
and (c) re-scaling features (columns) of V by a,

X ′ = V diag(a) ∈ Rd×p. (A34)



The output X ′ is a new tensor of the same shape as X ,
which can be used in the next layer. In this sense, CBAM
is a block to be used within the architecture, like SE [29].
However, we can also see it as a pooling process if we per-
form it at the end of a network, followed by GAP:

z = πA(X
′) = V diag(a)1p/p = V a/p ∈ Rd. (A35)

We also simplify CBAM by removing max-pooling from
both attention mechanisms and keeping average pooling
only. Then, (A32) takes the form

s = πA(V
⊤) = V ⊤1d/d = (diag(q)X)⊤1d/d (A36)

= X⊤q/d ∈ Rp. (A37)

This reveals pairwise interaction by dot-product similarity
between q as query and X as key. It was not evident in
the original formulation, because dot product was split into
element-wise product followed by sum.

We conclude that this modified CBAM module is a
non-iterative instance of our pooling framework with
u0 = πA(X) ∈ Rd, query mapping ϕQ(u) =
σ(MLP(u))/d ∈ Rd, key mapping ϕK = id, pairwise
similarity function s(x,y) = x⊤y, spatial attention
a = h(s) = σ(conv7(s))/p ∈ Rp, value mapping
ϕV (X) = diag(q)X ∈ Rd×p, average pooling func-
tion f = f−1 and output mapping ϕU = id.

The original design does not use z; instead, it has an out-
put mapping ϕX(X) = V diag(a) = diag(q)X diag(a) ∈
Rd×p. Thus, it can be used iteratively along with other map-
pings of X to form a modified network architecture.

SimPool is similar in that u0 = πA(X) but otherwise its
attention mechanism is different: there is no channel atten-
tion while in spatial attention there are learnable query/key
mappings and competition between spatial locations.

A2.5. Group 4: Transformers

We re-formulate the standard ViT [18] in two streams,
where one performs pooling and the other feature mapping.
We thus show that the pooling stream is an iterative instance
of our framework, where iterations are blocks. We then ex-
amine the variant CaiT [80], which is closer to SimPool in
that pooling takes place in the upper few layers with the
features being fixed.

Vision transformer (ViT) [18] The transformer encoder
tokenizes the input image, i.e., it splits the image into p non-
overlapping patches and maps them to patch token embed-
dings of dimension d through a linear mapping. It then con-
catenates a learnable CLS token embedding, also of dimen-
sion d, and adds a learnable position embedding of dimen-
sion d to all tokens. It is thus initialized as

F 0 = (u0 X0) ∈ Rd×(p+1), (A38)

where u0 ∈ Rd is the initial CLS token embedding and
X0 ∈ Rd×p contains the initial patch embeddings.

The encoder contains a sequence of blocks. Given token
embeddings F t = (ut Xt) ∈ Rd×(p+1) as input, a block
performs the following operations:

Gt = F t + MSA(LN(F t)) ∈ Rd×(p+1) (A39)

F t+1 = Gt + MLP(LN(Gt)) ∈ Rd×(p+1), (A40)

where LN is LayerNorm [1] and MLP is a network of two
affine layers with a ReLU activation in-between, applied to
all tokens independently. Finally, at the end of block T − 1,
the image is pooled into vector u = LN(uT ).

Given F t ∈ Rd×(p+1), the multi-head self-attention
(MSA) operation uses three linear mappings to form the
query Q = WQF

t, key K = WKF
t and value V =

WV F
t, all in Rd×(p+1). It then splits each of the three into

m submatrices, each of size d/m× (p+1), where m is the
number of heads.

Given a stacked matrix A = (A1; . . . ;Am) ∈ Rd×n,
where Ai ∈ Rd/m×n for i ∈ [m], we denote splitting as

A = gm(A) = {A1, . . . , Am} ⊂ Rd/m×n. (A41)

Thus, with Q = gm(Q) = {Qi}, K = gm(K) = {Ki},
V = gm(V ) = {Vi}, self-attention is defined as

Ai = σ2

(
K⊤

i Qi/
√
d′
)
∈ R(p+1)×(p+1) (A42)

Zi = ViAi ∈ Rd′×(p+1), (A43)

for i ∈ [m], where d′ = d/m. Finally, given Z = {Zi},
submatrices are grouped back and an output linear mapping
yields the output of MSA:

U =WUg
−1
m (Z) ∈ Rd×(p+1). (A44)

Here, we decompose the above formulation into two par-
allel streams. The first operates on the CLS token embed-
ding ut ∈ Rd, initialized by learnable parameter u0 ∈ Rd

and iteratively performing pooling. The second operates on
the patch embeddings Xt ∈ Rd×p, initialized by X0 ∈
Rd×p as obtained by tokenization and iteratively perform-
ing feature extraction. We focus on the first one.

Given ut ∈ Rd, Xt ∈ Rd×p at iteration t, we form the
query Q = gm(WQLN(ut)), key K = gm(WKLN(Xt))
and value V = gm(WV LN(Xt)). Cross-attention between
Q and K,V follows for i ∈ [m]:

ai = σ2

(
K⊤

i qi/
√
d′
)
∈ Rp (A45)

zi = Viai ∈ Rd′
. (A46)

Finally, denotingZ = {z1, . . . , zm}, the CLS token embed-
ding at iteration t+ 1 is given by

gt = ut +WUg
−1
m (Z) ∈ Rd (A47)

ut+1 = gt + MLP(LN(gt)) ∈ Rd. (A48)



We now simplify the above formulation by removing
LayerNorm and residual connections. We also remove the
dependence of self-attention of patch embeddings on the
CLS token.

We conclude that ViT [18] is an iterative instance of
our pooling framework with learnable u0 ∈ Rd, query
mapping ϕQ(u) = gm(WQu) ⊂ Rd′

with d′ = d/m,
key mapping ϕK(X) = gm(WKX) ⊂ Rd′×p, pair-
wise similarity function s(x,y) = x⊤y, spatial at-
tention A = h(S) = {σ2(si/

√
d′)}mi=1 ⊂ Rp,

value mapping ϕV (X) = gm(WVX) ⊂ Rd′×p, av-
erage pooling function f = f−1 and output mappings
ϕX(X) = MLP(MSA(X)) ∈ Rd×p and ϕU (Z) =
MLP(WUg

−1
m (Z)) ∈ Rd.

Although k = 1, splitting into m submatrices and op-
erating on them independently is the same as defining m
query vectors in Rd via the block-diagonal matrix

Q =

 q1 . . . 0
...

. . .
...

0 . . . qm

 ∈ Rd×m. (A49)

Q interacts with K by dot product, essentially operating in
m orthogonal subspaces. This gives rise to an attention
matrix A ∈ Rp×m containing ai (A45) as columns and a
pooled matrix Z ∈ Rd×m containing zi (A46) as columns.

Thus, the m heads in multi-head attention bear similar-
ities to the k pooled vectors in our formulation. The fact
that transformer blocks act as iterations strengthens our ob-
servation that methods with k > 1 are iterative. However,
because of linear maps at every stage, there is no correspon-
dence between heads across iterations.

Class-attention in image transformers (CaiT) [80] This
work proposes two modifications in the architecture of
ViT [18]. The first is that the encoder consists of two stages.
In stage one, patch embeddings are processed alone, with-
out a CLS token. In stage two, a learnable CLS token is
introduced that interacts with patch embeddings with cross-
attention, while the patch embeddings remain fixed. The
second modification is that it introduces two learnable di-
agonal matrices Λt

G,Λ
t
X ∈ Rd×d at each iteration (block)

t and uses them to re-weight features along the channel di-
mension.

Thus, stage one is specified by a modification of
(A39), (A40) as follows:

Gt = Xt + Λt
GMSA(LN(Xt)) ∈ Rd×p (A50)

Xt+1 = Gt + Λt
XMLP(LN(Gt)) ∈ Rd×p. (A51)

This is similar to [29, 92], only here the parameters are
learnable rather than obtained by GAP. Similarly, stage two

is specified by a modification of (A45)-(A48). Typically,
stage two consists only of a few (1-3) iterations.

We conclude that a simplified version of stage two of
CaiT [80] is an iterative instance of our pooling frame-
work with the same options as ViT [18] except for the
output mapping ϕX = id.

SimPool is similar in that there are again two stages, but
stage one is the entire encoder, while stage two is a sin-
gle non-iterative cross-attention operation between features
and their GAP, using function fα for pooling.

Slot attention [49] is also similar to stage two of CaiT,
performing few iterations of cross-attention between fea-
tures and slots with ϕX = id, but with a single head, k > 1
and different mapping functions.

Algorithm 2: SimPool. Green: learnable.
input : d: dimension, p: patches
input : features X ∈ Rd×p

output: pooled vector u ∈ Rd

1 u0 ← X1p/p ∈ Rd ▷ initialization (12)
2 X ← LN(X) ∈ Rd×p ▷ LayerNorm [1]
3 q ←WQu

0 ∈ Rd ▷ query (13)
4 K ←WKX ∈ Rd×p ▷ key (14)
5 a ← σ2(K

⊤q/
√
d) ∈ Rp ▷ attention (15)

6 V ← X −minX ∈ Rd×p ▷ value (16)
7 u ← f−1

α (fα(V )a) ∈ Rd ▷ pooling(8), (17)

A2.6. SimPool

SimPool is summarized in algorithm 2. We are given
a feature matrix X ∈ Rd×p, resulting from flattening of
tensor X ∈ Rd×W×H into p = W × H patches. We
form the initial representation u0 = πA(X) ∈ Rd (12) by
global average pooling (GAP), which is then mapped by
WQ ∈ Rd×d (13) to form the query vector q ∈ Rd. Af-
ter applying LayerNorm [1], X ′ = LN(X), we map X ′ by
WK ∈ Rd×d (14) to form the key K ∈ Rd×p. Then, q
and K interact to generate the attention map a ∈ Rp (15).
Finally, the pooled representation u ∈ Rd is a generalized
weighted average of the value V = X ′ −minX ′ ∈ Rd×p

with a determining the weights and scalar function fα (8)
determining the pooling operation (17).

The addition to what presented in the paper is Layer-
Norm after obtaining u0 and before K,V . That is, (14)
and (16) are modified as

K = ϕK(X) =WKLN(X) ∈ Rd×p. (A52)

V = ϕV (X) = LN(X)−min LN(X) ∈ Rd×p. (A53)



As shown in Table 10, it is our choice in terms of simplic-
ity, performance, and attention map quality to apply Layer-
Norm to key and value and linear layers to query and key.
The learnable parameters are WQ and WK .

In summary, SimPool is a non-iterative instance of our
pooling framework with k = 1, u0 = πA(X) ∈ Rd,
query mapping ϕQ(u) = WQu ∈ Rd, key map-
ping ϕK(X) = WKLN(X) ∈ Rd×p, pairwise simi-
larity function s(x,y) = x⊤y, spatial attention a =
h(s) = σ2(s/

√
d) ∈ Rp, value mapping ϕV (X) =

LN(X) − min LN(X) ∈ Rd×p, average pooling func-
tion f = fα and output mapping ϕU = id.

A3. More experiments

A3.1. More datasets, networks and protocols

Downstream tasks For image classification, we use
CIFAR-10 [40], CIFAR-100 [40] and Oxford Flowers [58].
CIFAR-10 consists of 60,000 images in 10 classes, with
6,000 images per class. CIFAR-100 is just like CIFAR-10,
except it has 100 classes containing 600 images each. Ox-
ford Flowers consists of 102 flower categories containing
between 40 and 258 images each.

For semantic segmentation, we fine-tune a linear layer
of a self-supervised ViT-S on ADE20K [102], measuring
mIoU, mAcc, and aAcc. The training set consists of 20k
images and the validation set of 2k images in 150 classes.

For background changes, we use the linear head and
linear probe of a supervised and self-supervised ViT-S,
respectively, measuring top-1 classification accuracy on
ImageNet-1k-9 [95] (IN-9) dataset. IN-9 contains nine
coarse-grained classes with seven variations of both back-
ground and foreground.

For image retrieval, we extract features from a self-
supervised ResNet-50 and ViT-S and evaluate them on
ROxford and RParis [68], measuring mAP. These are the
revisited Oxford [64] and Paris [65] datasets, comprising
5,062 and 6,412 images collected from Flickr by searching
for Oxford and Paris landmarks respectively.

For fine-grained classification, we extract features from
a supervised and self-supervised ResNet-50 and ViT-S and
evaluate them on Caltech-UCSD Birds (CUB200) [86],
Stanford Cars (CARS196) [39], In-Shop Clothing Retrieval
(In-Shop) [46] and Stanford Online Products (SOP) [60],
measuring Revall@k. Dataset statistics are summarized in
Table A1.

For unsupervised object discovery, we use VOC07 [20]
trainval, VOC12 [21] trainval and COCO 20K [44, 85]. The
latter is a subset of COCO2014 trainval dataset [44], com-
prising 19,817 randomly selected images. VOC07 com-
prises 9,963 images depicting 24,640 annotated objects.

DATASET CUB200 CARS196 SOP IN-SHOP

Objects birds cars furniture clothes
# classes 200 196 22, 634 7, 982
# train images 5, 894 8, 092 60, 026 26, 356
# test images 5, 894 8, 093 60, 027 26, 356

Table A1. Statistics and settings for the four fine-grained classifi-
cation datasets.

VOC12 comprises 11,530 images depicting 27,450 anno-
tated objects.

Ablation For the ablation of subsection A3.4, we train su-
pervised ResNet-18 and ViT-T for image classification on
ImageNet-20% and ImageNet-1k respectively.

A3.2. Implementation details

Analysis We train ResNet-18 on ImageNet-20% for 100
epochs following the ResNet-50 recipe of [91], but with
learning rate 0.1. We train on 4 GPUs with a global batch
size of 4 × 128 = 512, using SGD [71] with momentum.
We incorporate pooling methods as a layer at the end of the
model.

Group 1. For HOW [78], we use a kernel of size 3 and
do not perform dimension reduction. For LSE [66], we ini-
tialize the scale as r = 10. For GeM [69], we use a kernel
of size 7 and initialize the exponent as p = 2.

Group 2. For k-means, OTK [53] and slot attention [49],
we set k = 3 vectors and take the maximum of the three
logits per class. For convergence, we set tolerance t = 0.01
and iterations T = 5 for k-means. We set the iterations to
T = 3 for OTK and slot attention.

Group 3. For CBAM [92], we use a kernel of size 7. For
SE [29] and GE [28], we follow the implementation of [91].

Group 4. For ViT [18] and CaiT [80] we use m = 4
heads. For CaiT we set the iterations to T = 1, as this
performs best.

Benchmark For supervised pre-training, we train
ResNet-50 for 100 and 200 epochs, ConvNeXt-S and ViT-S
for 100 and 300 epochs and ViT-B for 100 epochs on
ImageNet-1k. For ResNet-50 we follow [91], using SGD
with momentum with learning rate 0.4. We train on 8 GPUs
with global batch size 8 × 128 = 1024. For ConvNeXt-S
we follow [47], using AdamW [50] with learning rate
0.004. We use 8 GPUs with an aggregation factor of 4
(backpropagating every 4 iterations), thus with global batch
size 8 × 4 × 256 = 4096. For ViT-S we follow [91], using
AdamW with learning rate 5 × 10−4. We train on 8 GPUs
with global batch size 8 × 74 = 592. For the 300 epoch
experiments, we follow the same setup as for 100.

For self-supervised pre-training, we train ResNet-50,
ConvNeXt-S and ViT-S with DINO [8] on ImageNet-1k for
100 and 300 epochs, following [8] and using 6 local crops.



For ResNet-50, we train on 8 GPUs with global batch size
8× 160 = 1280. We use learning rate 0.3, minimum learn-
ing rate 0.0048, global crop scale [0.14, 1.0] and local crop
scale [0.05, 0.14]. For ConvNeXt-S, we train on 8 GPUs
with global batch size 8 × 60 = 480. We use learning rate
0.001, minimum learning rate 2 × 10−6, global crop scale
[0.14, 1.0] and local crop scale [0.05, 0.14]. As far as we
know, we are the first to integrate DINO into ConvNeXt-
S. For ViT-S, we train on 8 GPUs with global batch size
8 × 100 = 800. We use LARS [96] with learning rate
5× 10−4, minimum learning rate of 1× 10−5, global crop
scale [0.25, 1.0] and local crop scale [0.05, 0.25]. For the
300 epoch experiments, we follow the same setup as for
100. For linear probing, we follow [8], using 4 GPUs with
global batch size 4× 256 = 1024.

Downstream tasks For image classification, we fine-
tune supervised and self-supervised ViT-S on CIFAR-10,
CIFAR-100 and Oxford Flowers, following [103]. We use
a learning of 7.5 × 10−6. We train on 8 GPUS for 1000
epochs with a global batch size of 8× 96 = 768.

For object localization, we use the supervised and self-
supervised ViT-S on CUB and ImageNet-1k, without fine-
tuning. We follow [11] and we use the MaxBoxAccV2 met-
ric. For the baseline, we use the mean attention map over
all heads of the CLS token to generate the bounding boxes.
For SimPool, we use the attention map a (15).

For unsupervised object discovery, we use the self-
supervised ViT-S on VOC07 [20] trainval, VOC12 [21]
trainval and COCO 20K [44, 85], without fine-tuning. We
adopt LOST [73] and DINO-seg [73, 8] to extract bound-
ing boxes. For both methods, we follow the best default
choices [73]. LOST operates on features. We use the the
keys of the last self-attention layer for the baseline and the
keys K (14) for SimPool. DINO-seg operates on attention
maps. We use the attention map of the head that achieves
the best results following [73], i.e. head 4, for the baseline
and the attention map a (15) for SimPool.

For semantic segmentation, we use the self-supervised
ViT-S on ADE20K [102]. To evaluate the quality of the
learned representation, we only fine-tune a linear layer on
top of the fixed patch features, without multi-scale train-
ing or testing and with the same hyper-parameters as in
iBOT [103]. We follow the setup of [45], i.e., we train
for 160,000 iterations with 512 × 512 images. We use
AdamW [50] optimizer with initial learning rate 3 × 10−5,
poly-scheduling and weight decay of 0.05. We train on 4
GPUS with a global batch size of 4× 4 = 16.

For computation resources, we measure GFLOPS for in-
put size 224× 224 on a single NVIDIA A100 40GB GPU.

A3.3. More benchmarks

Self-supervised pre-training On the 100% of ImageNet-
1k, we train ViT-S with DINO [8] for 300 epochs. Table A2

METHOD EPOCHS
VIT-S

k-NN PROB

Baseline 300 72.2 74.3
SimPool 300 72.6 75.0

Table A2. Image classification top-1 accuracy (%) on ImageNet-
1k. Self-supervised pre-training with DINO [8] for 300 epochs.
Baseline: GAP for convolutional, CLS for transformers.

METHOD MIOU MACC AACC

Baseline 26.4 34.0 71.6
SimPool 27.9 35.7 72.6

Table A3. Semantic segmentation on ADE20K [102]. ViT-S pre-
trained on ImageNet-1k for 100 epochs. Self-supervision with
DINO [8].

NETWORK METHOD
ROXFORD RPARIS

MEDIUM HARD MEDIUM HARD

Baseline 27.2 7.9 47.3 19.0
ResNet-50

SimPool 29.7 8.7 51.6 23.0

Baseline 29.4 10.0 54.6 26.2
ViT-S

SimPool 32.1 10.6 56.5 27.3

Table A4. Image retrieval mAP (%) without fine-tuning on
ROxford and RParis [68]. Self-supervised pre-training with
DINO [8] on ImageNet-1k for 100 epochs.

shows that SimPool improves over the baseline by 0.4% k-
NN and 0.7% linear probing.

Semantic segmentation We evaluate semantic segmenta-
tion on ADE20K [102] under self-supervised pre-training.
To evaluate the quality of the learned representation, we
only fine-tune a linear layer on top of the fixed patch fea-
tures, as in iBOT [103]. Table A3 shows that SimPool in-
creases all scores by more than 1% over the baseline. These
results testify the improved quality of the learned represen-
tations when pre-training with SimPool.

Background changes Deep neural networks often rely on
the image background, which can limit their ability to gen-
eralize well. To achieve better performance, these models
must be able to cope with changes in the background and
prioritize the foreground. To evaluate SimPool robustness
to the background changes, we use the ImageNet-1k-9 [95]
(IN-9) dataset. In four of these datasets, i.e., Only-FG (OF),
Mixed-Same (MS), Mixed-Rand (MR), and Mixed-Next
(MN), the background is modified. The three other datasets
feature masked foregrounds, i.e., No-FG (NF), Only-BG-B
(OBB), and Only-BG-T (OBT).

Image retrieval without fine-tuning While classification
accuracy indicates ability of a model to recognize objects of
the same classes as those it was trained for, it does not nec-
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Figure A1. Image classification top-1 accuracy (%) vs. exponent
γ = (1− α)/2 (17) for ResNet-18 supervised on ImageNet-20%
and ViT-T supervised on ImageNet-1k, both for 100 epochs.

essarily reflect its ability to capture the visual similarity be-
tween images, when tested on a dataset from a different dis-
tribution. Here, we evaluate this property of visual features
using ResNet-50 and ViT-S; for particular object retrieval
without fine-tuning on ROxford and RParis [68]. In Ta-
ble A4, we observe that SimPool is very effective, improv-
ing the retrieval performance of both models on all datasets
and evaluation protocols over the baseline.

Fine-grained classification We evaluate fine-grained
classification using ResNet-50 and ViT-S, both supervised
and self-supervised, following [36]. We extract features
from test set images and directly apply nearest neighbor
search, measuring Recall@k. Table A5 shows that Sim-
Pool is superior to the baseline in most of the datasets, mod-
els and supervision settings, with the exception of ResNet-
50 supervised on In-Shop, ResNet-50 self-supervised on
Cars196 and ViT-S self-supervised on SOP (3 out of 16
cases). The improvement is roughly 1-2% Recall@1 in
most cases, and is most pronounced on self-supervised on
CUB200, roughly 5%.

A3.4. More ablations

Pooling parameter α (17) We ablate the effect of param-
eter α of the pooling function fα (17) on the classification
performance of SimPool using ResNet-18 on ImageNet-
20% and ViT-T on ImageNet-1k for 100 epochs. We find
learnable α (or γ = (1− α)/2) to be inferior both in terms
of performance and attention map quality. For ResNet-18
on ImageNet-20%, it gives top-1 accuracy 56.0%. Clamp-
ing to γ = 5 gives 56.3% and using a 10× smaller learning
rate gives 56.5%.

In Figure A1, we set exponent γ to be a hyperparameter
and observe that for both networks, values between 1 and
3 are relatively stable. Specifically, the best choice is 2 for
ResNet-18 and 1.25 for ViT-T. Thus, we choose exponent
2 for convolutional networks (ResNet-18, ResNet-50 and
ConvNeXt-S) and 1.25 for vision transformers (ViT-T, ViT-
S and ViT-B).

A3.5. More visualizations

Attention maps: ViT Figure A2 shows attention maps of
supervised and self-supervised ViT-S trained on ImageNet-
1k. The ViT-S baseline uses the CLS token for pooling by
default. For SimPool, we remove the CLS stream entirely
from the encoder and use the attention map a (15).

We observe that under self-supervision, the attention
map quality of SimPool is on par with the baseline and
in some cases the object of interest is slightly more pro-
nounced, e.g., rows 1, 3, 6 and 7.

What is more impressive is supervised training. In this
case, the baseline has very low quality of attention maps, fo-
cusing only on part of the object of interest (e.g., rows 1, 2,
5, 6, 10), focusing on background more than self-supervised
(e.g., rows 1, 4, 6, 7, 8), even missing the object of interest
entirely (e.g., rows 3, 9). By contrast, the quality of atten-
tion maps of SimPool is superior even to self-supervised,
attending more to the object surface and less background.

Segmentation masks Figure A3 shows the same images
for the same setting as in Figure A2, but this time overlays
segmenation masks on top input images, corresponding to
more than 60% mass of the attention map. Again, Sim-
Pool is on par with baseline when self-supervised, super-
vised baseline has poor quality and supervised SimPool is a
lot better, although its superiority is not as evident as with
the raw attention maps.

Object localization Figure A4 visualizes object localiza-
tion results, comparing bounding boxes of SimPool with the
baseline. The results are obtained from the experiments of
Table 5, using ViT-S with supervised pre-training. We ob-
serve that the baseline systematically fails to localize the
objects accurately. On the other hand, SimPool allows rea-
sonable localization of the object of interest just from the at-
tention map, without any supervision other than the image-
level label.

Attention maps: The effect of γ Figure A5 and Fig-
ure A6 visualize the effect of exponent γ = (1 − α)/2 of
pooling operation fα (8) on the quality of the attention maps
of ResNet-18 and ViT-T, respectively. The use of the aver-
age pooling operation f−1 as opposed to fα (8) is referred
to as no γ. For ResNet-18, we observe that for γ < 1.25
or γ > 3.0, the attention maps are of low quality, failing to
delineate the object of interest (e.g., rows 4, 5, 11), missing
the object of interest partially (e.g., rows 1, 2, 3, 6) or even
entirely (e.g., row 7). For ViT-T, it is impressive that for γ
around or equal to 1.25, the attention map quality is high,
attending more (e.g., rows 1, 2, 4, 7) or even exclusively
(e.g., rows 3, 6, 11) the object instead of background.

Attention maps: CLS vs. SimPool Figure A7 compares
the quality of the attention maps of supervised ViT-T trained
with CLS to that of SimPool. For CLS, we visualize the



NETWORK METHOD
CUB200 CARS196 SOP IN-SHOP

R@1 2 4 R@1 2 4 R@1 10 100 R@1 10 20

SUPERVISED

Baseline 42.7 55.2 67.7 42.3 54.2 65.7 48.3 63.2 71.8 27.6 49.9 56.5
ResNet-50

SimPool 43.0 55.2 67.9 43.8 56.2 67.4 48.7 64.1 72.9 27.0 49.9 56.5

Baseline 55.8 68.3 78.3 38.2 50.3 61.8 54.1 69.2 81.6 30.9 56.5 63.2
ViT-S

SimPool 56.8 69.6 79.2 38.9 50.7 63.3 54.2 69.4 81.9 32.8 57.6 64.3

SELF-SUPERVISED

Baseline 26.0 36.2 46.9 34.1 44.2 55.0 51.2 65.3 76.5 37.1 58.4 64.1
ResNet-50

SimPool 30.7 40.9 53.3 33.6 43.6 54.3 52.1 66.5 77.2 38.1 60.0 65.6

Baseline 56.7 69.4 80.5 37.5 47.5 58.4 59.8 74.4 85.4 40.4 63.9 70.3
ViT-S

SimPool 61.8 74.4 83.6 37.6 48.0 58.4 59.5 73.9 85.0 41.1 64.3 70.8

Table A5. Fine-grained classification Recall@k (R@k, %) without fine-tuning on four datasets, following the same protocol as [55, 36].
Models pre-trained on ImageNet-1k for 100 epochs. Self-supervision with DINO [8].

mean attention map of the heads of the CLS token for each of
the 12 blocks. For SimPool, we visualize the attention map
a (15). SimPool has attention maps of consistently higher
quality, delineating and exclusively focusing on the object
of interest (e.g., rows 6, 10, 13). It is impressive that while
CLS interacts with patch tokens in 12 different blocks, it is
inferior to SimPool, which interacts only once at the end.

Attention maps: ResNet, ConvNeXt Figure A8 and
Figure A9 show attention maps of supervised and self-
supervised ResNet-50 and ConvNeXt-S, respectively. Both
networks are pre-trained on ImageNet-1k for 100 epochs.
We use the attention map a (15). We observe that Sim-
Pool enables the default ResNet-50 and ConvNeXt-S to ob-
tain raw attention maps of high quality, focusing on the
object of interest and not on background or other objects.
This is not possible with the default global average pooling
and is a property commonly thought of vision transform-
ers when self-supervised [8]. Between supervised and self-
supervised SimPool, the quality differences are small, with
self-supervised being slightly superior.
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image CLS SimPool CLS SimPool

Figure A2. Attention maps of ViT-S [18] trained on ImageNet-1k for 100 epochs under supervision and self-supervision with DINO [8].
For ViT-S baseline, we use the mean attention map of the CLS token. For SimPool, we use the attention map a (15). Input image resolution:
896× 896; patches: 16× 16; output attention map: 56× 56.
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Figure A3. Segmentation masks of ViT-S [18] trained on ImageNet-1k for 100 epochs under supervision and self-supervision with
DINO [8]. For ViT-S baseline, we use the attention map of the CLS token. For SimPool, we use the attention map a (15). Same as
Figure A2, with attention map value thresholded at 60% of mass and mask overlaid on input image.



Figure A4. Object localization on ImageNet-1k with ViT-S [18] supervised pre-training on ImageNet-1k-1k for 100 epochs. Bounding
boxes obtained from experiment of Table 5, following [11]. Green: ground-truth bounding boxes; red: baseline, predicted by the attention
map of the CLS token; blue: predicted by SimPool, using the attention map a (15).
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Figure A5. The effect of γ. Attention maps of ResNet-18 [26] with SimPool using different values of γ trained on ImageNet-20% for 100
epochs under supervision. We use the attention map a (15). Input image resolution: 896×896; output attention map: 28×28; no γ: using
the average pooling operation f−1 instead of fα (8). We set γ = 2 by default for convolutional networks.
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Figure A6. The effect of γ. Attention maps of ViT-T [18] with SimPool using different values of γ trained on ImageNet-1k for 100 epochs
under supervision. We use the attention map a (15). Input image resolution: 896× 896; patches: 16× 16; output attention map: 56× 56;
no γ: using the average pooling operation f−1 instead of fα (8). We set γ = 1.25 by default for transformers.
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Figure A7. CLS vs. SimPool. Attention maps of ViT-T [18] trained on ImageNet-1k for 100 epochs under supervision. For CLS, we use the
mean attention map of the CLS token of each block. For SimPool, we use the attention map a (15). Input image resolution: 896 × 896;
patches: 16× 16; output attention map: 56× 56.
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Figure A8. Attention maps of ResNet-50 [26] trained on ImageNet-1k for 100 epochs under supervision and self-supervision with DINO [8].
We use the attention map a (15). Input image resolution: 896× 896; output attention map: 28× 28.
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Figure A9. Attention maps of ConvNeXt-S [47] trained on ImageNet-1k for 100 epochs under supervision and self-supervision with
DINO [8]. We use the attention map a (15). Input image resolution: 896× 896; output attention map: 28× 28.
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