
Keep It SimPool:
Who Said Supervised Transformers Suffer from Attention Deficit?

Supplementary Material

Bill Psomas1,2 Ioannis Kakogeorgiou1 Konstantinos Karantzalos1 Yannis Avrithis2

1National Technical University of Athens
2Institute of Advanced Research in Artificial Intelligence (IARAI)

A1. Extended related work

Spatial pooling of visual input is the process by which
spatial resolution is reduced to 1 × 1, such that the input is
mapped to a single vector. This process can be gradual and
interleaved with mapping to a feature space, because any
feature space is amenable to smoothing or downsampling.
The objective is robustness to deformation while preserving
important visual information.

Via a similarity function, e.g. dot product, the vector rep-
resentation of an image can be used for efficient matching to
class representations for category-level tasks or to the rep-
resentation of another image for instance-level tasks. One
may obtain more than one vectors per image as a represen-
tation, but this requires a particular kernel for matching.

Background The study of receptive fields in neuro-
science [15] lead to the development of 2D Gabor fil-
ters [16] as a model of the first processing layer in the visual
cortex. Visual descriptors based on filter banks in the fre-
quency domain [61] and orientation histograms [51, 14] can
be seen as efficient implementations of the same idea. Apart
from mapping to a new space—that of filter responses or
orientation bins—they involve a form of smoothing, at least
in some orientation, and weighted local spatial pooling.

Textons [17] can be seen as a second layer, originally
studied in the context of texture discrimination [81] and seg-
mentation [17, 52] and taking the form of multidimensional
histograms on Gabor filter responses. The bag of words
model [75, 12] is based on the same idea, as a histogram
on other visual descriptors. Again, apart from mapping to
a new space—that of textons or visual words—they involve
local or global spatial pooling.

Histograms and every step of building visual features can
be seen as a form of nonlinear coding followed by pool-
ing [5]. Coding is maybe the most important factor. For
example, a high-dimensional mapping before pooling, op-
tionally followed by dimension reduction after pooling, can
reduce interference between elements [62, 35, 4]. Weighting

of individual elements is also important in attending impor-
tant regions [25, 34, 76] and in preventing certain elements
from dominating others [32, 54, 33].

The pooling operation itself is any symmetric
(permutation-invariant) set function, which can be ex-
pressed in the form F (X) = g

(∑
x∈X f(x)

)
[98]. The

most common is average and maximum [72, 6, 5].
Common ways to obtain a representation of multiple vec-

tors are using a spatial partition [25] or a partition in the
feature space [31, 77].

Convolutional networks Following findings of neuro-
science, early convolutional networks [22, 42] are based on
learnable convolutional layers interleaved with fixed spatial
pooling layers that downsample, which is an instance of the
coding-pooling framework. The same design remains until
today [41, 74, 26, 47]. Again, apart from mapping to a new
space, convolutional layers involve a form of weighted lo-
cal pooling. Again, the operation in pooling layers is com-
monly average [42] or maximum [72, 41].

Early networks end in a fully-connected layer over a fea-
ture tensor of low resolution [42, 41, 74]. This evolved
into spatial pooling, e.g. global average pooling (GAP) for
classification [43, 26], regional pooling for detection [23],
or global maximum followed by a pairwise loss [79] for
instance-level tasks. This is beneficial for downstream tasks
and interpretability [101].

The spatial pooling operation at the end of the network
is widely studied in instance level-tasks [2, 79, 69], giv-
ing rise to forms of spatial attention [37, 59, 7, 78, 57],
In category-level tasks, it is more common to study feature
re-weighting as components of the architecture [29, 92, 28].
The two are closely related because e.g. the weighted av-
erage is element-wise weighting followed by sum. Most
modern pooling operations are learnable.

Pooling can be spatial [28, 59, 7, 78, 57], over chan-
nels [29], or both [37, 92]. CBAM [92] is particularly re-
lated to our work in the sense that it includes global average

pooling followed by a form of spatial attention, although
the latter is not evident in its original formulation and al-
though CBAM is designed as a feature re-weighting rather
than pooling mechanism.

One may obtain a representation ofmultiple vectors e.g.
by some form of clustering [30] or optimal transport [53].

Vision transformers Pairwise interactions between fea-
tures are forms ofself-attentionthat can be seen as alterna-
tives to convolution or forms of pooling. They have com-
monly been designed as architectural components of con-
volutional networks, again over the spatial [90, 3, 100, 67]
or the channel dimensions [9, 87]. Originating in language
models [83],vision transformers[18] streamlined these ap-
proaches and became the dominant competitors of convolu-
tional networks.

Transformers commonly downsample only at the input,
forming spatialpatch tokens. Pooling is based on a learn-
able CLS (“classi�cation”) token, which, beginning at the
input space, undergoes the same self-attention operation
with patch tokens and eventually provides a global image
representation. That is, the network ends in global weighted
average pooling, using as weights the attention ofCLS over
the patch tokens. Pooling is still gradual, sinceCLS interacts
with patch tokens throughout the network depth.

Several variants of transformers often bring back ideas
from convolutional networks, including spatial hierar-
chy [45], relative position encoding [94, 24], re-introducing
convolution [93, 19], re-introducing pooling layers [27, 45,
88, 89], or simple pooling instead of attention [97]. In this
sense, downsampling may occur inside the transformer,e.g.
for classi�cation [27, 45] or detection [88, 89].

Few works that have studied anything other thanCLS

for pooling in transformers are mostly limited to GAP [45,
99, 82, 70]. CLS offers attention maps for free, but those
are typically of low quality unless in a self-supervised set-
ting [8], which is not well studied. Few works that attempt
to rectify this in the supervised setting include a spatial en-
tropy loss [63], shape distillation from convolutional net-
works [56] and skipping computation of self-attention, ob-
serving that the quality of self-attention is still good at in-
termediate layers [84]. It has also been found bene�cial to
inject theCLS token only at the last few layers [80].

We are thus motivated to question why the pooling oper-
ation at the end of the network needs to be different in con-
volutional networks and vision transformers and why pool-
ing with aCLS token needs to be performed across the net-
work depth. We study pooling in both kinds of networks, in
supervised and self-supervised settings alike. We derive a
simple, attention-based, universal pooling mechanism that
applies equally to all cases, improving both performance
and the quality of attention maps.

A2. More on the method

In subsection A2.1, we summarize the generalized pool-
ing framework of subsection 3.1. We then detail how to
formulate methods studied in subsection 3.2 as instances of
our pooling framework so as to obtain Table 1, examining
them in groups as in subsection 3.2. Finally, we summarize
SimPool in subsection A2.6.

Notation By id we denote the identity mapping. Given
n 2 N, we de�ne[n] := f 1; : : : ; ng. By 1A we denote the
indicator function of setA, by � ij the Kronecker delta and
by [P] the Iverson bracket of statementP. By A � B we
denote the Hadamard product of matricesA; B and byA � n

the Hadamardn-th power ofA. We recall that by� 1; � 2 we
denote the row-wise and column-wise`1-normalization of
a matrix, respectively, while� 2 is column-wise softmax.

Algorithm 1: Our generalized pooling framework.
input : p: #patches,d: dimension
input : X 2 Rd� p: features
option: k: #pooled vectors
option: INIT : pooling initialization
option: T: #iterations
option: f � t

Q g; f � t
K g: query, key mappings

option: s: pairwise similarity function
option: h: attention function
option: f � t

V g: value mapping
option: f : pooling function
option: f � t

X g; f � t
U g: output mappings

output: d0: output dimension
output: U 2 Rd0� k : pooled vectors

1 d0 d . input dimension

2 X 0 X 2 Rd0 � k . initialize features

3 U0 INIT (X) 2 Rd0 � k . initialize pooling
4 for t = 0 ; : : : ; T � 1 do
5 Q � t

Q (U t) 2 Rn t � k . query (1)

6 K � t
K (X t) 2 Rn t � p . key (2)

7 S 0p� k . pairwise similarity
8 for i 2 [p], j 2 [k] do
9 sij s(k i ; q j)

10 A h(S) 2 Rp� k . attention (3)
11 V � t

V (X t) 2 Rn t � p . value (4)
12 Z f � 1(f (V)A) 2 Rn t � k . pooling (5)

13 X t +1 � t
X (X t) 2 Rdt +1 � p . update feat. (6)

14 U t +1 � t
U (Z) 2 Rdt +1 � k . update pool. (7)

15 d0 dT . output dimension
16 U UT . pooled vectors

A2.1. Pooling framework summary

Our generalized pooling framework is summarized in al-
gorithm 1. Asinput, it takes the featuresX 2 Rd� p, rep-
resentingp patch embeddings of dimensiond. As output, it
returns the pooled vectorsU 2 Rd0� k , that is,k vectors of
dimensiond0. As options, it takes the numberk of vectors
to pool; the pooling initialization functionINIT ; the number
T of iterations; the query and key mappingsf � t

Q g; f � t
K g;

the pairwise similarity functions; the attention functionh;
the value mappingf � t

V g; the pooling functionf ; and the
output mappingsf � t

X g; f � t
U g.

The mappings and dimensions within iterations may be
different at each iteration, and all optional functions may
be learnable. As such, the algorithm is general enough to
incorporate any deep neural network. However, the focus is
on pooling, as is evident by the pairwise similarity between
queries (pooled vectors) and keys (features) in line 9, which
is a form ofcross-attention.

A2.2. Group 1: Simple methods withk = 1

These methods are non-iterative, there are no queryQ,
key K , similarity matrixS or functionh, and the attention
is a vectora 2 Rp that is either �xed or a function directly
of X . With the exception of HOW [78], the value matrix is
V = X , that is,� V = id , and we are pooling into vector
u = z 2 Rd, that is,� U = id . Then, (5) takes the form

u = f � 1(f (X)a) 2 Rd; (A1)

and we focus on instantiating it to identify functionf and
attention vectora. With the exception of LSE [66], function
f is f � (8) and we seek to identify� .

Global average pooling (GAP) [43, 26] According
to (9),

� A (X) :=
1
p

pX

j =1

x j = X 1p=p = f � 1
� 1 (f � 1(X)a); (A2)

wheref � 1(x) = x
1 � (� 1)

2 = x, thusf � 1 = id , anda =
1p=p.

Max pooling [79] AssumingX � 0,

� max (X) := max
j 2 [p]

x j = lim
 !1

0

@
pX

j =1

x
j

1

A

1

(A3)

= lim
 !1

(X 1p)
1
 = f � 1

�1 (f �1 (X)a); (A4)

where all operations are taken element-wise anda = 1p.

Generalized mean (GeM) [69] AssumingX � 0,

� GEM (X) :=

0

@1
p

pX

j =1

x
j

1

A

1

(A5)

= (X 1p=p)
1
 = f � 1

� (f � (X)a); (A6)

where all operations are taken element-wise, = (1 � �)=2
is a learnable parameter anda = 1p=p.

SimPool has the same pooling function but is based on
an attention mechanism.

Log-sum-exp (LSE) [66]

� LSE(X) :=
1
r

log

0

@1
p

pX

j =1

exp(r x j)

1

A (A7)

= f � 1(f (X)a); (A8)

where all operations are taken element-wise,r is a learnable
scale parameter,f (x) = erx anda = 1p=p.

HOW [78] The attention value of each featurex j is its
normkx j k. That is,

a = (kx 1k; : : : ; kx pk)> = (X � 2)> 1d (A9)

= diag(X > X) 2 Rp; (A10)

obtained by pooling over channels. The value matrix is

V = � V (X) = FC(avg3(X)) 2 Rd0� p; (A11)

whereavg3 is 3 � 3 local average pooling,FC is a �xed
fully-connected (1 � 1 convolutional) layer incorporating
centering, PCA dimension reduction and whitening accord-
ing to the statistics of the local features of the training set
andd0 < d is the output dimension. Then,

z =
pX

j =1

aj v j = Va = f � 1
� 1 (f � 1(V)a) 2 Rd0

; (A12)

wheref � 1 = id as in GAP. Finally, the output isu = � 2(z),
where the mapping� U = � 2 is `2-normalization.

A2.3. Group 2: Iterative methods with k > 1

We examine three methods, which, givenX 2 Rd� p

and k < p , seekU 2 Rd� k by iteratively optimizing a
kind of assignment between columns ofX andU. The lat-
ter are called references [53], centroids [48], or slots [49].
Assignment can be soft [53, 49] or hard [48]. It can be an
assignment of columns ofX to columns ofU [48, 49] or
both ways [53]. The algorithm may contain learnable com-
ponents [53, 49] or not [48].

Optimal transport kernel embedding (OTK) [53] Pool-
ing is based on a learnable parameterU 2 Rd� k . We de�ne
thep � k costmatrix C = (cij) consisting of the pairwise
squared Euclidean distances between columns ofX andU,
i.e., cij = kx i � u j k2. We seek ap � k non-negative
transportation planmatrixP 2 P representing a joint prob-
ability distribution over features ofX andU with uniform
marginals:

P := f P 2 Rp� k
+ : P1k = 1p=p; P> 1p = 1k =kg:

(A13)

The objective is to minimize the expected, underP, pair-
wise cost with entropic regularization

P � := arg min
P 2P

hP; Ci � �H (P); (A14)

where H (P) = � 1>
p (P � logP)1k is the entropy of

P, h�; �i is the Frobenius inner product and� > 0 con-
trols the sparsity ofP. The optimal solution isP � =
SINKHORN(e� C=�), where exponentiation is element-wise
and SINKHORN is the Sinkhorn-Knopp algorithm [38],
which iteratively`1-normalizes rows and columns of a ma-
trix until convergence [13]. Finally, pooling is de�ned as

U = (X)P � 2 Rd0� k ; (A15)

where (X) 2 Rd0� p and : Rd ! Rd0
is a Nystr̈om

approximation of a kernel embedding inRd, e.g. a Gaussian
kernel [53], which applies column-wise toX 2 Rd� p.

We conclude that OTK [53] is a instance of our pooling
framework with learnableU0 = U 2 Rd� k , query/key
mappings� Q = � K = id , pairwise similarity function
s(x; y) = � k x � yk2, attention matrixA = h(S) =
SINKHORN(eS=�) 2 Rp� k , value mapping� V = ,
average pooling functionf = f � 1 and output mapping
� U = id .

Although OTK is not formally iterative in our frame-
work, SINKHORN internally iterates indeed to �nd a soft-
assignment between the features ofX andU.

k-means [48] k-means aims to �nd ad� k matrixU min-
imizing the sum of squared Euclidean distances of each col-
umnx i of X to its nearest columnu j of U:

J (U) :=
pX

i =1

min
j 2 [k]

kx i � u j k2 : (A16)

Observe that (10) is the special casek = 1 , where the
unique minimumu � = � A (X) is found in closed form (11).
For k > 1, the distortion measureJ is non-convex and we
are only looking for a local minimum.

The standardk-means algorithm is initialized by ad � k
matrix U0 whose columns arek of the columns ofX
sampled at random and represent a set ofk centroidsin
Rd. Given U t at iteration t, we de�ne thep � k dis-
tancematrix D = (dij) consisting of the pairwise squared
Euclidean distances between columns ofX and U t , i.e.,
dij =

 x i � u t

j

 2

. For i 2 [p], featurex i is assigned
to the nearest centroidu t

j with index

ci = arg min
j 2 [k]

dij ; (A17)

where ties are resolved to the lowest index. Then, at itera-
tion t + 1 , centroidu t

j is updatedas the mean of features
x i assigned to it,i.e., for whichci = j :

u t +1
j =

1
P p

i =1 � ci j

pX

i =1

� ci j x i : (A18)

Let arg min1(D) be thep � k matrixM = (mij) with

mij = � ci j =
�
j = arg min j 02 [k]dij 0

�
: (A19)

That is, each rowd i 2 Rk of D yields a rowm i 2 f 0; 1gk

of M that is an one-hot vector indicating the minimal el-
ement overd i . De�ne operatorarg max1 accordingly.
Then, (A18) can be written in matrix form as

U t +1 = X� 2(arg max1(� D)) 2 Rd� k : (A20)

We conclude thatk-means is an iterative instance of
our pooling framework with the columns ofU0 2
Rd� k sampled at random from the columns ofX ,
query/key mappings� Q = � K = id , pairwise simi-
larity functions(x; y) = � k x � yk2, attention matrix
A = h(S) = � 2(arg max1(S)) 2 Rp� k , value map-
ping � V = id , average pooling functionf = f � 1 and
output mappings� X = � U = id .

Slot attention [49] Pooling is initialized by a randomd0�
k matrix U0 sampled from a normal distributionN (�; � 2)
with shared, learnable mean� 2 Rd0

and standard deviation
� 2 Rd0

. Given U t at iterationt, de�ne the queryQ =
WQ LN(U t) 2 Rn � k and keyK = WK LN(X) 2 Rn � p,
whereLN is LayerNorm [1] andn is a common dimension.
An attention matrix is de�ned as

A = � 1(� 2(K > Q=
p

n)) 2 Rp� k : (A21)

Then, with valueV = WV LN(X) 2 Rn � p, pooling is de-
�ned as the weighted average

Z = V A 2 Rn � k : (A22)

Finally, U t is updated according to

G = GRU(Z) 2 Rd0� k (A23)

U t +1 = G + MLP(LN(G)) 2 Rd0� k ; (A24)

whereGRU is agated recurrent unit[10] andMLP a multi-
layer perceptron with ReLU activation and a residual con-
nection [49].

We now simplify the above formulation by removing
LayerNorm and residual connections.

We conclude that slot attention [49] is an iterative in-
stance of our pooling framework withU0 a random
d0 � k matrix sampled fromN (�; � 2) with learnable
parameters�; � 2 Rd0

, query mapping� Q (U) =
WQ U 2 Rn � k , key mapping� K (X) = WK X 2
Rn � p, pairwise similarity functions(x; y) = x> y , at-
tention matrixA = h(S) = � 1(� 2(S=

p
n)) 2 Rp� k ,

value mapping� V (X) = WV X 2 Rn � p, average
pooling functionf = f � 1, output mapping� U (Z) =
MLP(GRU(Z)) 2 Rd0� k and output dimensiond0.

SimPool is similar in its attention mechanism, but is non-
iterative withk = 1 and initialized by GAP.

A2.4. Group 3: Feature reweighting,k = 1

We examine two methods, originally proposed as com-
ponents of the architecture, which use attention mechanisms
to re-weight features in the channel or the spatial dimension.
We modify them by placing at the end of the network, fol-
lowed by GAP. We thus reveal that they serve as attention-
based pooling. This includes pairwise interaction, although
this was not evident in their original formulation.

Squeeze-and-excitation block (SE) [29] The squeeze
operation aims to mitigate the limited receptive �eld of con-
volutional networks, especially in the lower layers. It uses
global average pooling over the spatial dimension,

u0 = � A (X) 2 Rd: (A25)

Then, theexcitationoperation aims at capturing channel-
wise dependencies and involves two steps. In the �rst step,
a learnable gating mechanism forms a vector

q = � (MLP(u0)) 2 Rd; (A26)

where� is the sigmoid function andMLP concists of two
linear layers with ReLU activation in-between and forming
a bottlenect of hidden dimensiond=r. This vector expresses
an importance of each channel that is not mutually exclu-
sive. The second step re-scales each channel (row) ofX by
the corresponding element ofq,

V = diag(q)X 2 Rd� p: (A27)

The outputX 0 = V 2 Rd� p is a new tensor of the same
shape asX , which can be used in the next layer. In this
sense, the entire process is considered a block to be used
within the architecture of convolutional networks at sev-
eral layers. This yields a new family of networks, called
squeeze-and-excitation networks(SENet).

However, we can also see it as a pooling process if we
perform it at the end of a network, followed by GAP:

z = � A (V) = diag(q)X 1p=p 2 Rd; (A28)

We conclude that this modi�ed SE block is a non-
iterative instance of our pooling framework withu0 =
� A (X) 2 Rd, query mapping� Q (u) = � (MLP(u)) 2
Rd, no key K , similarity matrix S of function h,
uniform spatial attentiona = 1p=p, value mapping
� V (X) = diag(q)X 2 Rd� p and average pooling
functionf = f � 1.

The original design does not usea or z; instead, it has an
output mapping� X (X) = V = diag(q)X 2 Rd� p. Thus,
it can be used iteratively along with other mappings ofX to
form a modi�ed network architecture.

Convolutional block attention module (CBAM) [92]
This is an extension of SE [29] that acts on both the channel
and spatial dimension in similar ways.Channel attentionis
similar to SE: It involves (a) global average and maximum
pooling ofX over the spatial dimension,

U0 = (� A (X) � max (X)) 2 Rd� 2; (A29)

(b) a learnable gating mechanism forming vector

q = � (MLP(U0)12=2) 2 Rd; (A30)

which is de�ned as in SE [29] but includes averaging over
the two columns before� ; and (c) re-scaling channels
(rows) ofX by q,

V = diag(q)X 2 Rd� p: (A31)

Spatial attentionperforms a similar operation in the spa-
tial dimension: (a) global average and maximum pooling of
V over the channel dimension,

S = (� A (V >) � max (V >)) 2 Rp� 2; (A32)

(b) a learnable gating mechanism forming vector

a = � (conv7(S)) 2 Rp; (A33)

whereconv7 is a a convolutional layer with kernel size7� 7;
and (c) re-scaling features (columns) ofV by a,

X 0 = V diag(a) 2 Rd� p: (A34)

The outputX 0 is a new tensor of the same shape asX ,
which can be used in the next layer. In this sense, CBAM
is a block to be used within the architecture, like SE [29].
However, we can also see it as apooling processif we per-
form it at the end of a network, followed by GAP:

z = � A (X 0) = V diag(a)1p=p = Va=p 2 Rd: (A35)

We alsosimplify CBAM by removing max-pooling from
both attention mechanisms and keeping average pooling
only. Then, (A32) takes the form

s = � A (V >) = V > 1d=d = (diag(q)X)> 1d=d (A36)

= X > q=d 2 Rp: (A37)

This revealspairwise interactionby dot-product similarity
betweenq as query andX as key. It was not evident in
the original formulation, because dot product was split into
element-wise product followed by sum.

We conclude that this modi�ed CBAM module is a
non-iterative instance of our pooling framework with
u0 = � A (X) 2 Rd, query mapping� Q (u) =
� (MLP(u))=d 2 Rd, key mapping� K = id , pairwise
similarity function s(x; y) = x> y , spatial attention
a = h(s) = � (conv7(s))=p 2 Rp, value mapping
� V (X) = diag(q)X 2 Rd� p, average pooling func-
tion f = f � 1 and output mapping� U = id .

The original design does not usez; instead, it has an out-
put mapping� X (X) = V diag(a) = diag(q)X diag(a) 2
Rd� p. Thus, it can be used iteratively along with other map-
pings ofX to form a modi�ed network architecture.

SimPool is similar in thatu0 = � A (X) but otherwise its
attention mechanism is different: there is no channel atten-
tion while in spatial attention there are learnable query/key
mappings and competition between spatial locations.

A2.5. Group 4: Transformers

We re-formulate the standard ViT [18] in two streams,
where one performs pooling and the other feature mapping.
We thus show that the pooling stream is an iterative instance
of our framework, where iterations are blocks. We then ex-
amine the variant CaiT [80], which is closer to SimPool in
that pooling takes place in the upper few layers with the
features being �xed.

Vision transformer (ViT) [18] The transformer encoder
tokenizesthe input image,i.e., it splits the image intop non-
overlappingpatchesand maps them to patch token embed-
dings of dimensiond through a linear mapping. It then con-
catenates a learnableCLS token embedding, also of dimen-
siond, and adds a learnableposition embeddingof dimen-
siond to all tokens. It is thus initialized as

F 0 = (u0 X 0) 2 Rd� (p+1) ; (A38)

whereu0 2 Rd is the initial CLS token embedding and
X 0 2 Rd� p contains the initial patch embeddings.

The encoder contains a sequence ofblocks. Given token
embeddingsF t = (u t X t) 2 Rd� (p+1) as input, a block
performs the following operations:

Gt = F t + MSA(LN(F t)) 2 Rd� (p+1) (A39)

F t +1 = Gt + MLP(LN(Gt)) 2 Rd� (p+1) ; (A40)

whereLN is LayerNorm [1] andMLP is a network of two
af�ne layers with a ReLU activation in-between, applied to
all tokens independently. Finally, at the end of blockT � 1,
the image is pooled into vectoru = LN(uT).

Given F t 2 Rd� (p+1) , the multi-head self-attention
(MSA) operation uses three linear mappings to form the
query Q = WQ F t , key K = WK F t and valueV =
WV F t , all in Rd� (p+1) . It then splits each of the three into
m submatrices, each of sized=m� (p+ 1) , wherem is the
number ofheads.

Given a stacked matrixA = (A1; : : : ; Am) 2 Rd� n ,
whereA i 2 Rd=m � n for i 2 [m], we denote splitting as

A = gm (A) = f A1; : : : ; Am g � Rd=m � n : (A41)

Thus, withQ = gm (Q) = f Qi g, K = gm (K) = f K i g,
V = gm (V) = f Vi g, self-attention is de�ned as

A i = � 2

�
K >

i Qi =
p

d0
�

2 R(p+1) � (p+1) (A42)

Z i = Vi A i 2 Rd0� (p+1) ; (A43)

for i 2 [m], whered0 = d=m. Finally, givenZ = f Z i g,
submatrices are grouped back and an output linear mapping
yields the output ofMSA:

U = WU g� 1
m (Z) 2 Rd� (p+1) : (A44)

Here, we decompose the above formulation into two par-
allel streams. The �rst operates on theCLS token embed-
ding u t 2 Rd, initialized by learnable parameteru0 2 Rd

and iteratively performing pooling. The second operates on
the patch embeddingsX t 2 Rd� p, initialized by X 0 2
Rd� p as obtained by tokenization and iteratively perform-
ing feature extraction. We focus on the �rst one.

Givenu t 2 Rd, X t 2 Rd� p at iterationt, we form the
query Q = gm (WQ LN(u t)) , key K = gm (WK LN(X t))
and valueV = gm (WV LN(X t)) . Cross-attentionbetween
Q andK; V follows for i 2 [m]:

ai = � 2

�
K >

i q i =
p

d0
�

2 Rp (A45)

zi = Vi ai 2 Rd0
: (A46)

Finally, denotingZ = f z1; : : : ; zm g, theCLS token embed-
ding at iterationt + 1 is given by

gt = u t + WU g� 1
m (Z) 2 Rd (A47)

u t +1 = gt + MLP(LN(gt)) 2 Rd: (A48)

We now simplify the above formulation by removing
LayerNorm and residual connections. We also remove the
dependence of self-attention of patch embeddings on the
CLS token.

We conclude that ViT [18] is an iterative instance of
our pooling framework with learnableu0 2 Rd, query
mapping� Q (u) = gm (WQ u) � Rd0

with d0 = d=m,
key mapping� K (X) = gm (WK X) � Rd0� p, pair-
wise similarity functions(x; y) = x> y , spatial at-
tention A = h(S) = f � 2(si =

p
d0)gm

i =1 � Rp,
value mapping� V (X) = gm (WV X) � Rd0� p, av-
erage pooling functionf = f � 1 and output mappings
� X (X) = MLP(MSA(X)) 2 Rd� p and � U (Z) =
MLP(WU g� 1

m (Z)) 2 Rd.

Although k = 1 , splitting into m submatrices and op-
erating on them independently is the same as de�ningm
query vectors inRd via the block-diagonal matrix

Q =

0

B
@

q1 : : : 0
...

...
...

0 : : : qm

1

C
A 2 Rd� m : (A49)

Q interacts withK by dot product, essentially operating in
m orthogonal subspaces. This gives rise to an attention
matrix A 2 Rp� m containingai (A45) as columns and a
pooled matrixZ 2 Rd� m containingzi (A46) as columns.

Thus, them heads in multi-head attention bear similar-
ities to thek pooled vectors in our formulation. The fact
that transformer blocks act as iterations strengthens our ob-
servation that methods withk > 1 are iterative. However,
because of linear maps at every stage, there is no correspon-
dence between heads across iterations.

Class-attention in image transformers (CaiT) [80] This
work proposes two modi�cations in the architecture of
ViT [18]. The �rst is that the encoder consists of two stages.
In stage one, patch embeddings are processed alone, with-
out a CLS token. In stage two, a learnableCLS token is
introduced that interacts with patch embeddings with cross-
attention, while the patch embeddings remain �xed. The
second modi�cation is that it introduces two learnable di-
agonal matrices� t

G ; � t
X 2 Rd� d at each iteration (block)

t and uses them to re-weight features along the channel di-
mension.

Thus, stage one is speci�ed by a modi�cation of
(A39), (A40) as follows:

Gt = X t + � t
G MSA(LN(X t)) 2 Rd� p (A50)

X t +1 = Gt + � t
X MLP(LN(Gt)) 2 Rd� p: (A51)

This is similar to [29, 92], only here the parameters are
learnable rather than obtained by GAP. Similarly, stage two

is speci�ed by a modi�cation of (A45)-(A48). Typically,
stage two consists only of a few (1-3) iterations.

We conclude that a simpli�ed version of stage two of
CaiT [80] is an iterative instance of our pooling frame-
work with the same options as ViT [18] except for the
output mapping� X = id .

SimPool is similar in that there are again two stages, but
stage one is the entire encoder, while stage two is a sin-
gle non-iterative cross-attention operation between features
and their GAP, using functionf � for pooling.

Slot attention [49] is also similar to stage two of CaiT,
performing few iterations of cross-attention between fea-
tures and slots with� X = id , but with a single head,k > 1
and different mapping functions.

Algorithm 2: SimPool. Green: learnable.
input : d: dimension,p: patches
input : featuresX 2 Rd� p

output: pooled vectoru 2 Rd

1 u0 X 1p=p 2 Rd . initialization (12)
2 X LN(X) 2 Rd� p . LayerNorm [1]
3 q WQ u0 2 Rd . query (13)
4 K WK X 2 Rd� p . key (14)
5 a � 2(K > q=

p
d) 2 Rp . attention (15)

6 V X � min X 2 Rd� p . value (16)
7 u f � 1

� (f � (V)a) 2 Rd . pooling(8), (17)

A2.6. SimPool

SimPool is summarized in algorithm 2. We are given
a feature matrixX 2 Rd� p, resulting from �attening of
tensorX 2 Rd� W � H into p = W � H patches. We
form the initial representationu0 = � A (X) 2 Rd (12) by
global average pooling(GAP), which is then mapped by
WQ 2 Rd� d (13) to form thequeryvectorq 2 Rd. Af-
ter applying LayerNorm [1],X 0 = LN(X), we mapX 0 by
WK 2 Rd� d (14) to form thekey K 2 Rd� p. Then,q
andK interact to generate the attention mapa 2 Rp (15).
Finally, the pooled representationu 2 Rd is a generalized
weighted average of thevalueV = X 0 � min X 0 2 Rd� p

with a determining the weights and scalar functionf � (8)
determining the pooling operation (17).

The addition to what presented in the paper is Layer-
Norm after obtainingu0 and beforeK; V . That is, (14)
and (16) are modi�ed as

K = � K (X) = WK LN(X) 2 Rd� p: (A52)

V = � V (X) = LN(X) � min LN(X) 2 Rd� p: (A53)

As shown in Table 10, it is our choice in terms of simplic-
ity, performance, and attention map quality to apply Layer-
Norm to key and value and linear layers to query and key.
The learnable parameters areWQ andWK .

In summary, SimPool is a non-iterative instance of our
pooling framework withk = 1 , u0 = � A (X) 2 Rd,
query mapping� Q (u) = WQ u 2 Rd, key map-
ping � K (X) = WK LN(X) 2 Rd� p, pairwise simi-
larity function s(x; y) = x> y , spatial attentiona =
h(s) = � 2(s=

p
d) 2 Rp, value mapping� V (X) =

LN(X) � min LN(X) 2 Rd� p, average pooling func-
tion f = f � and output mapping� U = id .

A3. More experiments

A3.1. More datasets, networks and protocols

Downstream tasks For image classi�cation, we use
CIFAR-10 [40], CIFAR-100 [40] and Oxford Flowers [58].
CIFAR-10 consists of 60,000 images in 10 classes, with
6,000 images per class. CIFAR-100 is just like CIFAR-10,
except it has 100 classes containing 600 images each. Ox-
ford Flowers consists of 102 �ower categories containing
between 40 and 258 images each.

For semantic segmentation, we �ne-tune a linear layer
of a self-supervised ViT-S on ADE20K [102], measuring
mIoU, mAcc, and aAcc. The training set consists of 20k
images and the validation set of 2k images in 150 classes.

For background changes, we use the linear head and
linear probe of a supervised and self-supervised ViT-S,
respectively, measuring top-1 classi�cation accuracy on
ImageNet-1k-9 [95] (IN-9) dataset. IN-9 contains nine
coarse-grained classes with seven variations of both back-
ground and foreground.

For image retrieval, we extract features from a self-
supervised ResNet-50 and ViT-S and evaluate them on
ROxford andRParis [68], measuring mAP. These are the
revisited Oxford [64] and Paris [65] datasets, comprising
5,062 and 6,412 images collected from Flickr by searching
for Oxford and Paris landmarks respectively.

For �ne-grained classi�cation, we extract features from
a supervised and self-supervised ResNet-50 and ViT-S and
evaluate them on Caltech-UCSD Birds (CUB200) [86],
Stanford Cars (CARS196) [39], In-Shop Clothing Retrieval
(In-Shop) [46] and Stanford Online Products (SOP) [60],
measuring Revall@k. Dataset statistics are summarized in
Table A1.

For unsupervised object discovery, we use VOC07 [20]
trainval, VOC12 [21] trainval and COCO 20K [44, 85]. The
latter is a subset of COCO2014 trainval dataset [44], com-
prising 19,817 randomly selected images. VOC07 com-
prises 9,963 images depicting 24,640 annotated objects.

DATASET CUB200 CARS196 SOP IN-SHOP

Objects birds cars furniture clothes
classes 200 196 22; 634 7; 982
train images 5; 894 8; 092 60; 026 26; 356
test images 5; 894 8; 093 60; 027 26; 356

Table A1.Statistics and settingsfor the four �ne-grained classi�-
cation datasets.

VOC12 comprises 11,530 images depicting 27,450 anno-
tated objects.

Ablation For the ablation of subsection A3.4, we train su-
pervised ResNet-18 and ViT-T forimage classi�cationon
ImageNet-20% and ImageNet-1k respectively.

A3.2. Implementation details

Analysis We train ResNet-18 on ImageNet-20% for 100
epochs following the ResNet-50 recipe of [91], but with
learning rate0:1. We train on 4 GPUs with a global batch
size of4 � 128 = 512, using SGD [71] with momentum.
We incorporate pooling methods as a layer at the end of the
model.

Group 1. For HOW [78], we use a kernel of size 3 and
do not perform dimension reduction. For LSE [66], we ini-
tialize the scale asr = 10. For GeM [69], we use a kernel
of size 7 and initialize the exponent asp = 2 .

Group 2. Fork-means, OTK [53] and slot attention [49],
we setk = 3 vectors and take the maximum of the three
logits per class. For convergence, we set tolerancet = 0 :01
and iterationsT = 5 for k-means. We set the iterations to
T = 3 for OTK and slot attention.

Group 3. For CBAM [92], we use a kernel of size 7. For
SE [29] and GE [28], we follow the implementation of [91].

Group 4. For ViT [18] and CaiT [80] we usem = 4
heads. For CaiT we set the iterations toT = 1 , as this
performs best.

Benchmark For supervised pre-training, we train
ResNet-50 for 100 and 200 epochs, ConvNeXt-S and ViT-S
for 100 and 300 epochs and ViT-B for 100 epochs on
ImageNet-1k. For ResNet-50 we follow [91], using SGD
with momentum with learning rate0:4. We train on 8 GPUs
with global batch size8 � 128 = 1024. For ConvNeXt-S
we follow [47], using AdamW [50] with learning rate
0:004. We use 8 GPUs with an aggregation factor of 4
(backpropagating every 4 iterations), thus with global batch
size8 � 4 � 256 = 4096. For ViT-S we follow [91], using
AdamW with learning rate5 � 10� 4. We train on 8 GPUs
with global batch size8 � 74 = 592. For the 300 epoch
experiments, we follow the same setup as for 100.

For self-supervisedpre-training, we train ResNet-50,
ConvNeXt-S and ViT-S with DINO [8] on ImageNet-1k for
100 and 300 epochs, following [8] and using 6 local crops.

For ResNet-50, we train on 8 GPUs with global batch size
8 � 160 = 1280. We use learning rate0:3, minimum learn-
ing rate0:0048, global crop scale[0:14; 1:0] and local crop
scale[0:05; 0:14]. For ConvNeXt-S, we train on 8 GPUs
with global batch size8 � 60 = 480. We use learning rate
0:001, minimum learning rate2 � 10� 6, global crop scale
[0:14; 1:0] and local crop scale[0:05; 0:14]. As far as we
know, we are the �rst to integrate DINO into ConvNeXt-
S. For ViT-S, we train on 8 GPUs with global batch size
8 � 100 = 800. We use LARS [96] with learning rate
5 � 10� 4, minimum learning rate of1 � 10� 5, global crop
scale[0:25; 1:0] and local crop scale[0:05; 0:25]. For the
300 epoch experiments, we follow the same setup as for
100. For linear probing, we follow [8], using 4 GPUs with
global batch size4 � 256 = 1024.

Downstream tasks For image classi�cation, we �ne-
tune supervised and self-supervised ViT-S on CIFAR-10,
CIFAR-100 and Oxford Flowers, following [103]. We use
a learning of7:5 � 10� 6. We train on 8 GPUS for 1000
epochs with a global batch size of8 � 96 = 768.

For object localization, we use the supervised and self-
supervised ViT-S on CUB and ImageNet-1k, without �ne-
tuning. We follow [11] and we use the MaxBoxAccV2 met-
ric. For the baseline, we use the mean attention map over
all heads of theCLS token to generate the bounding boxes.
For SimPool, we use the attention mapa (15).

For unsupervised object discovery, we use the self-
supervised ViT-S on VOC07 [20] trainval, VOC12 [21]
trainval and COCO 20K [44, 85], without �ne-tuning. We
adopt LOST [73] and DINO-seg [73, 8] to extract bound-
ing boxes. For both methods, we follow the best default
choices [73]. LOST operates on features. We use the the
keysof the last self-attention layer for the baseline and the
keysK (14) for SimPool. DINO-seg operates on attention
maps. We use the attention map of the head that achieves
the best results following [73],i.e. head 4, for the baseline
and the attention mapa (15) for SimPool.

For semantic segmentation, we use the self-supervised
ViT-S on ADE20K [102]. To evaluate the quality of the
learned representation, we only �ne-tune a linear layer on
top of the �xed patch features, without multi-scale train-
ing or testing and with the same hyper-parameters as in
iBOT [103]. We follow the setup of [45],i.e., we train
for 160,000 iterations with512 � 512 images. We use
AdamW [50] optimizer with initial learning rate3 � 10� 5,
poly-scheduling and weight decay of 0.05. We train on 4
GPUS with a global batch size of4 � 4 = 16.

Forcomputation resources, we measure GFLOPS for in-
put size224� 224on a single NVIDIA A100 40GB GPU.

A3.3. More benchmarks

Self-supervised pre-training On the 100% of ImageNet-
1k, we train ViT-S with DINO [8] for 300 epochs. Table A2

METHOD EPOCHS
V IT-S

k-NN PROB

Baseline 300 72.2 74.3
SimPool 300 72.6 75.0

Table A2.Image classi�cationtop-1 accuracy (%) on ImageNet-
1k. Self-supervised pre-training with DINO [8] for 300 epochs.
Baseline: GAP for convolutional,CLS for transformers.

METHOD MIOU MACC AACC

Baseline 26.4 34.0 71.6
SimPool 27.9 35.7 72.6

Table A3.Semantic segmentationon ADE20K [102]. ViT-S pre-
trained on ImageNet-1k for 100 epochs. Self-supervision with
DINO [8].

NETWORK METHOD
R OXFORD R PARIS

MEDIUM HARD MEDIUM HARD

Baseline 27.2 7.9 47.3 19.0
ResNet-50

SimPool 29.7 8.7 51.6 23.0

Baseline 29.4 10.0 54.6 26.2
ViT-S

SimPool 32.1 10.6 56.5 27.3

Table A4. Image retrieval mAP (%) without �ne-tuning on
R Oxford and R Paris [68]. Self-supervised pre-training with
DINO [8] on ImageNet-1k for 100 epochs.

shows that SimPool improves over the baseline by 0.4%k-
NN and 0.7% linear probing.

Semantic segmentation We evaluate semantic segmenta-
tion on ADE20K [102] under self-supervised pre-training.
To evaluate the quality of the learned representation, we
only �ne-tune a linear layer on top of the �xed patch fea-
tures, as in iBOT [103]. Table A3 shows that SimPool in-
creases all scores by more than 1% over the baseline. These
results testify the improved quality of the learned represen-
tations when pre-training with SimPool.

Background changes Deep neural networks often rely on
the image background, which can limit their ability to gen-
eralize well. To achieve better performance, these models
must be able to cope with changes in the background and
prioritize the foreground. To evaluate SimPool robustness
to the background changes, we use the ImageNet-1k-9 [95]
(IN-9) dataset. In four of these datasets,i.e., Only-FG (OF),
Mixed-Same (MS), Mixed-Rand (MR), and Mixed-Next
(MN), the background is modi�ed. The three other datasets
feature masked foregrounds,i.e., No-FG (NF), Only-BG-B
(OBB), and Only-BG-T (OBT).

Image retrieval without �ne-tuning While classi�cation
accuracy indicates ability of a model to recognize objects of
the same classes as those it was trained for, it does not nec-

1 2 3 4 5
55.5

56

56.5

57

ac
cu

ra
cy

,R
es

N
et

-1
8

ResNet-18

ViT-T

1 2 3 4 5
63.2

63.4

63.6

63.8

64

64.2

ac
cu

ra
cy

,V
iT

-T

Figure A1.Image classi�cationtop-1 accuracy (%)vs. exponent
 = (1 � �)=2 (17) for ResNet-18 supervised on ImageNet-20%
and ViT-T supervised on ImageNet-1k, both for 100 epochs.

essarily re�ect its ability to capture the visual similarity be-
tween images, when tested on a dataset from a different dis-
tribution. Here, we evaluate this property of visual features
using ResNet-50 and ViT-S; for particular object retrieval
without �ne-tuning onROxford andRParis [68]. In Ta-
ble A4, we observe that SimPool is very effective, improv-
ing the retrieval performance of both models on all datasets
and evaluation protocols over the baseline.

Fine-grained classi�cation We evaluate �ne-grained
classi�cation using ResNet-50 and ViT-S, both supervised
and self-supervised, following [36]. We extract features
from test set images and directly apply nearest neighbor
search, measuring Recall@k. Table A5 shows that Sim-
Pool is superior to the baseline in most of the datasets, mod-
els and supervision settings, with the exception of ResNet-
50 supervised on In-Shop, ResNet-50 self-supervised on
Cars196 and ViT-S self-supervised on SOP (3 out of 16
cases). The improvement is roughly 1-2% Recall@1 in
most cases, and is most pronounced on self-supervised on
CUB200, roughly 5%.

A3.4. More ablations

Pooling parameter� (17) We ablate the effect of param-
eter� of the pooling functionf � (17) on the classi�cation
performance of SimPool using ResNet-18 on ImageNet-
20% and ViT-T on ImageNet-1k for 100 epochs. We �nd
learnable� (or = (1 � �)=2) to be inferior both in terms
of performance and attention map quality. For ResNet-18
on ImageNet-20%, it gives top-1 accuracy56:0%. Clamp-
ing to = 5 gives56:3% and using a10� smaller learning
rate gives56:5%.

In Figure A1, we set exponent to be a hyperparameter
and observe that for both networks, values between1 and
3 are relatively stable. Speci�cally, the best choice is2 for
ResNet-18 and1:25 for ViT-T. Thus, we choose exponent
2 for convolutional networks (ResNet-18, ResNet-50 and
ConvNeXt-S) and1:25for vision transformers (ViT-T, ViT-
S and ViT-B).

A3.5. More visualizations

Attention maps: ViT Figure A2 shows attention maps of
supervised and self-supervised ViT-S trained on ImageNet-
1k. The ViT-S baseline uses theCLS token for pooling by
default. For SimPool, we remove theCLS stream entirely
from the encoder and use the attention mapa (15).

We observe that underself-supervision, the attention
map quality of SimPool is on par with the baseline and
in some cases the object of interest is slightly more pro-
nounced,e.g., rows 1, 3, 6 and 7.

What is more impressive issupervisedtraining. In this
case, the baseline has very low quality of attention maps, fo-
cusing only on part of the object of interest (e.g., rows 1, 2,
5, 6, 10), focusing on background more than self-supervised
(e.g., rows 1, 4, 6, 7, 8), even missing the object of interest
entirely (e.g., rows 3, 9). By contrast, the quality of atten-
tion maps of SimPool is superior even to self-supervised,
attending more to the object surface and less background.

Segmentation masks Figure A3 shows the same images
for the same setting as in Figure A2, but this time overlays
segmenation masks on top input images, corresponding to
more than 60% mass of the attention map. Again, Sim-
Pool is on par with baseline when self-supervised, super-
vised baseline has poor quality and supervised SimPool is a
lot better, although its superiority is not as evident as with
the raw attention maps.

Object localization Figure A4 visualizes object localiza-
tion results, comparing bounding boxes of SimPool with the
baseline. The results are obtained from the experiments of
Table 5, using ViT-S with supervised pre-training. We ob-
serve that the baseline systematically fails to localize the
objects accurately. On the other hand, SimPool allows rea-
sonable localization of the object of interest just from the at-
tention map, without any supervision other than the image-
level label.

Attention maps: The effect of Figure A5 and Fig-
ure A6 visualize the effect of exponent = (1 � �)=2 of
pooling operationf � (8) on the quality of the attention maps
of ResNet-18 and ViT-T, respectively. The use of the aver-
age pooling operationf � 1 as opposed tof � (8) is referred
to as no . For ResNet-18, we observe that for < 1:25
or > 3:0, the attention maps are of low quality, failing to
delineate the object of interest (e.g., rows 4, 5, 11), missing
the object of interest partially (e.g., rows 1, 2, 3, 6) or even
entirely (e.g., row 7). For ViT-T, it is impressive that for
around or equal to 1.25, the attention map quality is high,
attending more (e.g., rows 1, 2, 4, 7) or even exclusively
(e.g., rows 3, 6, 11) the object instead of background.

Attention maps: CLS vs. SimPool Figure A7 compares
the quality of the attention maps of supervised ViT-T trained
with CLS to that of SimPool. ForCLS, we visualize the

NETWORK METHOD
CUB200 CARS196 SOP IN-SHOP

R@1 2 4 R@1 2 4 R@1 10 100 R@1 10 20

SUPERVISED

Baseline 42.7 55.2 67.7 42.3 54.2 65.7 48.3 63.2 71.8 27.6 49.9 56.5
ResNet-50

SimPool 43.0 55.2 67.9 43.8 56.2 67.4 48.7 64.1 72.9 27.0 49.9 56.5

Baseline 55.8 68.3 78.3 38.2 50.3 61.8 54.1 69.2 81.6 30.9 56.5 63.2
ViT-S

SimPool 56.8 69.6 79.2 38.9 50.7 63.3 54.2 69.4 81.9 32.8 57.6 64.3

SELF-SUPERVISED

Baseline 26.0 36.2 46.9 34.1 44.2 55.0 51.2 65.3 76.5 37.1 58.4 64.1
ResNet-50

SimPool 30.7 40.9 53.3 33.6 43.6 54.3 52.1 66.5 77.2 38.1 60.0 65.6

Baseline 56.7 69.4 80.5 37.5 47.5 58.4 59.8 74.4 85.4 40.4 63.9 70.3
ViT-S

SimPool 61.8 74.4 83.6 37.6 48.0 58.4 59.5 73.9 85.0 41.1 64.3 70.8

Table A5.Fine-grained classi�cationRecall@k (R@k, %) without �ne-tuning on four datasets, following the same protocol as [55, 36].
Models pre-trained on ImageNet-1k for 100 epochs. Self-supervision with DINO [8].

mean attention map of the heads of theCLS token for each of
the 12 blocks. For SimPool, we visualize the attention map
a (15). SimPool has attention maps of consistently higher
quality, delineating and exclusively focusing on the object
of interest (e.g., rows 6, 10, 13). It is impressive that while
CLS interacts with patch tokens in 12 different blocks, it is
inferior to SimPool, which interacts only once at the end.

Attention maps: ResNet, ConvNeXt Figure A8 and
Figure A9 show attention maps of supervised and self-
supervised ResNet-50 and ConvNeXt-S, respectively. Both
networks are pre-trained on ImageNet-1k for 100 epochs.
We use the attention mapa (15). We observe that Sim-
Pool enables the default ResNet-50 and ConvNeXt-S to ob-
tain raw attention maps of high quality, focusing on the
object of interest and not on background or other objects.
This is not possible with the default global average pooling
and is a property commonly thought of vision transform-
ers when self-supervised [8]. Between supervised and self-
supervised SimPool, the quality differences are small, with
self-supervised being slightly superior.

input supervised supervised DINO [8] DINO [8]
image CLS SimPool CLS SimPool

Figure A2.Attention mapsof ViT-S [18] trained on ImageNet-1k for 100 epochs under supervision and self-supervision with DINO [8].
For ViT-S baseline, we use the mean attention map of theCLS token. For SimPool, we use the attention mapa (15). Input image resolution:
896� 896; patches:16 � 16; output attention map:56 � 56.

