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A. Experimental Setup
A.1. Datasets

Pretraining We use WebVid2M [3] for pretraining, con-
sisting of 2.5M video-caption pairs scraped from the inter-
net. The domain is open and the captions are manually gen-
erated. The average video duration is 18 seconds and the
average caption word count is 12.

Downstream tasks Downstream dataset statistics are
given in Table 4. Following [57], we use 1% of the training
data for fine-tuning in the few-shot setting.

MSRVTT-QA [53] is an extension of MSR-VTT [54],
where question-answer pairs are automatically generated
from video descriptions. MSVD-QA [53] is based on
MSVD [7] and question-answers pairs are automatically
generated as in MSRVTT-QA. ActivityNet-QA [58] is de-
rived from ActivityNet [6]. The average video duration is
180s. TGIF-QA [21] comprises several tasks, including
FRAME-QA, where the question can be answered from one
of the frames in a GIF. In this work, TGIF-QA refers only
to Frame-QA.

QA PAIRS

DATASET VIDEOS

TRAIN VAL TEST TOTAL

MSRVTT-QA. [53] 10k 159k 12k 73k 244k
MSVD-QA. [53] 2k 31k 6.5k 13k 50.5k
ActivityNet-QA [58] 5.8k 32k 18k 8k 58k
TGIF-QA [21] 40k 39k - 13k 53k

Table 4: Downstream dataset statistics.

A.2. Implementation Details

Text prompt parametrization Instead of defining text
prompts as parameters directly, we discuss here an alter-
native parametrization using projections. We first generate
a sequence of input prompts P* € RP*N and then we

project it as follows:
P! = WP e RZP*N, (8)

where W € R26PxD" (' is the number of layers of the
language model f and D its embedding dimension. Then,
P? can be reshaped as a 2 x C' x D x N tensor, representing
one pair of sequences Py, Py € RP*N for every layer
of f. After training, the input sequence P and projection
matrix W are discarded and we only keep P?. This allows
us to fine-tune fewer parameters at downstream tasks, which
is beneficial when data is limited.

Architecture details The frozen video encoder is CLIP
ViT-L/14 [10, 44], trained with contrastive loss on 400M
image-text pairs. We uniformly sample 7" = 10 frames lo-
cated at least 1 second apart and each frame is resized to
224 x 224 pixels; if the video is shorter than 10 seconds,
we zero-pad up to T' = 10 frames. The encoder then ex-
tracts one feature vector per frame of the dimension of 768,
followed by a linear projection to D = 1536 dimensions.

The visual mapping network has L = 2 layers, each with
a cross-attention and a self-attention, having 8 heads and
embedding dimension D = 1536. We use M = 10 learn-
able visual prompt vectors of dimension D = 1536.

The text tokenizer is based on SentencePiece [26] with a
vocabulary U of size 128k.

The frozen language model is DeBERTa-V2-
XLarge [17], trained using MLM on 160G text data,
following [57]. The model has C' = 24 layers, 24 attention
heads, and embedding dimension D = 1536, resulting in
900M parameters.

For the adapter layers [18], we set d = D/8 = 192 by
following [57]. For text prompts, we use N = 10 learnable
text prompt vectors, D’ = D/8 = 192, and C' = 24.

Downstream input design We limit the length of text
sequences to S = 256 tokens for pretraining and zero-
shot experiments and S = 128 tokens for downstream
experiments. We adopt the input design of [57] as fol-
lows: ”[CLS] Question: <Question>? Answer: [MASK].



Subtitles: <Subtitles> [SEP]”. Subtitles are optional and
if available, their token sequence X° is incorporated into
the input. In this case, the text input sequence becomes
Xt = (X7, X% X?).

Answer vocabulary The answer vocabulary U is con-
structed by selecting the top 1k most frequent answers from
the training set for the zero-shot setting, following [57, 60].
Another vocabulary is formed by including answers that oc-
cur at least twice in the training set for the few-shot setting,
as defined in [57]. Questions with answers outside the vo-
cabulary are excluded from the training process and are as-
sessed as incorrect during evaluation. To report results for
the few-shot setting, we choose the vocabulary that yields
the best performance on the validation set.

Answer embedding The classifier head of the frozen lan-
guage model includes more tokens than required for down-
stream training. To address this, by following [57], we
define a task-specific classification head by keeping the
weights of the pretrained head associated with the answer
vocabulary. At inference, we provide one mask token at the
input, regardless of the ground truth answer length, and we
obtain one output logit vector. For multi-token answers, we
take the average of the logits corresponding to the ground
truth words from the vocabulary.

Training settings We use the Adam optimizer [25] with
B = (0.9,0.95) in all experiments. We decay the learning
rate using a linear schedule with the warm-up in the first
10% of the iterations. We use dropout with probability 0.1
in the language model, adapter layers, text prompts, and vi-
sual mapping network. We adopt automatic mixed precision
training for all experiments.

We pretrain for 10 epochs on WebVid2M with a batch
size of 128 on 8 NVIDIA Tesla V100 GPUs, amounting
to 20 hours total training time. The base learning rate is
2 x 1075 and the learning rate for visual and text prompts
is separately set to 1073,

For fine-tuning on each downstream dataset, we train for
20 epochs with a batch size of 32 on 4 NVIDIA Tesla V100
GPUs. The base learning rate is searched over 5 values in
the interval [107°,5 x 1075], while the learning rate for
visual and text prompts is kept at 10~3. For prompt-only
fine-tuning, the base learning rate is searched over 3 values
in the interval [1072,3 x 1073].

B. More ablations

Prompt length Figure 2 shows the effect of the number
of prompts on few-shot performance, referring to both vi-
sual (M) and text (/V) prompts, i.e., M = N. Because the
space and time complexity of the model is quadratic in the
number of prompts, we limit this number to 50. We find that
accuracy is consistently best on all downstream benchmarks
for M = N = 10 prompts, which we choose as default.
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Figure 2: Few-shot top-1 validation accuracy vs. number
M = N of visual and text prompts for different downstream
datasets, using 1% of training data.

VPN MSRVTT MsSvD ANET TGIF
LAYERS -QA -QA -QA -QA
1 36.0 47.0 36.1 55.9

2 36.5 47.8 37.2 55.9

Table 5: Effect of number L of layers of our visual mapping
network on few-shot top-1 validation accuracy, using 1% of
training data. VPN: Visual Mapping Network. ANET-QA:
ActivityNet-QA.

REPARAM MSRVTT MsvD ANET TGIF
-QA -QA -QA -QA

35.6 47.4 34.0 55.1

v 36.5 47.8 37.2 55.9

Table 6: Effect of reparametrization of text prompts on few-
shot top-1 validation accuracy, using 1% of training data.
REPARAM: Reparametrization. ANET-QA: ActivityNet-
QA.

Number of layers of visual mapping network Table 5
shows the effect of the number L of layers of our visual
mapping network on few-shot performance. We only ex-
periment with up to 2 layers to avoid an excessive number
of parameters and complexity of our model. We find that
L = 2 works best, which we choose as default.

Reparametrization of text prompts In Table 6, we
investigate the impact of the reparametrization of text
prompts, as discussed in Subsection A.2, on few-shot per-
formance. We find that reparametrization consistently im-
proves performance on all downstream benchmarks. Even
though the number of trainable parameters increases from
87M to 101M during pretraining and fine-tuning, we do not
need to store the additional parameters at inference.

Handcrafted prompts We explore the use of handcrafted
prompts in the input text. In Table 7 and Table 8§, we con-



MSRVTT MsSvD ANET TGIF

# INPUT DESIGN -QA -QA QA -QA
1 “[CLS] <Question>? [MASK]. <Subtitles> [SEP]” 13.2 30.2 19.8 29.8
2 “[CLS] Answer the question: <Question>? [MASK]. <Subtitles> [SEP]” 7.8 22.3 14.3 35.3
3 “[CLS] <Question>? Answer: [MASK]. <Subtitles> [SEP]” 17.7 37.2 25.8 45.1
4 “[CLS] Question: <Question>? Answer: [MASK]. Subtitles: <Subtitles> [SEP]” 18.0 38.2 24.9 45.5

Table 7: Effect of handcrafted prompt placement on zero-shot top-1 validation accuracy. ANet-QA: ActivityNet-QA.

MSRVTT MsSvD ANET TGIF
-QA -QA -QA -QA

# INPUT DESIGN

1 “[CLS] <Question>? [MASK]. <Subtitles> [SEP]” 36.3 47.0 35.8 55.8
2 “[CLS] Answer the question: <Question>? [MASK]. <Subtitles> [SEP]” 36.3 46.8 35.1 55.8
3 “[CLS] <Question>? Answer: [MASK]. <Subtitles> [SEP]” 36.5 47.1 35.9 55.8
4 “[CLS] Question: <Question>? Answer: [MASK]. Subtitles: <Subtitles> [SEP]” 36.5 47.8 37.2 55.9

Table 8: Effect of handcrafted prompt placement on few-shot top-1 validation accuracy, using 1% of training data. ANet-QA:
ActivityNet-QA.

#TRAINING

METHOD SuB IMG VIO VOQA MSRVTT-QA MsvD-QA ANET-QA TGIF-QA
CLIP [44] 400M - 2.1 7.2 1.2 3.6
RESERVE [59] v - 20M 5.8 - - -
LAVENDER [34] 3M  2.5M 4.5 11.6 - 16.7
Flamingo-3B [ 1] 23B 27M 11.0 27.5 - -
Flamingo-9B [1] 23B 27M 13.7 30.2 - -
Flamingo [1] 23B 27M 17.4 35.6 - -
FrozenBilLM [57] - 10M 16.7 33.8 259 41.9
Just Ask [55] 69M - v 2.9 7.5 12.2 -
Just Ask [56] 6O9M  3M v 5.6 13.5 12.3 -
BLIP [32] 129M - v 19.2 35.2 - -
ViTiS (Ours) - 2.5M 18.2 36.2 25.0 45.5
ViTiS (Ours) v - 2.5M 18.1 36.1 25.5 45.5

Table 9: Extended version of Table 2, providing more results on zero-shot VideoQA top-1 accuracy on test sets, except TGIF-
QA on the validation set. Number of pretraining data: image-text/video-text pairs. VQA: visual question answer pairs. SUB:
subtitle input. ANET-QA: ActivityNet-QA. CLIP: CLIP ViT-L/14. Flamingo: Flamingo-80B. We gray out methods trained
on VQA pairs, which are not directly comparable.

#PRE-TRAINING

METHOD #SHOT IMG VID #PARAM MSRVTT-QA MsvVD-QA ANET-QA TGIF-QA
Flamingo-3B [1] 32 2.3B 27M 1.4B 25.6 42.6 - -
Flamingo-9B [1] 32 2.3B 27M 1.8B 294 47.2 - —
Flamingo-80B [1] 32 23B 27M 10B 31.0 52.3 - -
ViTiS (Ours) 32 -  25M 10IM 27.0+1.0 41.9+40.8 28.7+13 522412

Table 10: Few-shot VideoQA in-context learning. Mean and standard deviation of top-1 accuracy on test sets, except TGIF-
QA on the validation set, over 10 32-shot tasks drawn at random. Only our model involves parameter updates; we fine-tune
0.75M params. Number of pretraining data: image-text/video-text pairs. ANET-QA: ActivityNet-QA.



sider four different input designs for zero-shot and few-
shot settings, respectively: (i) no handcrafted prompts,
(ii) placed before the question, (iii) placed just before the
[MASK] token (answer), and (iv) placed just before the
question, answer and subtitles.

In zero-shot, handcrafted prompts are beneficial due to
the absence of task-specific learning for downstream tasks.
As shown in Table 7, the absence of handcrafted prompts
drastically reduces the performance (row 1), highlighting
their necessity. Moreover, the position of the handcrafted
prompt has a significant impact on the performance. More
specifically, the location of the “Answer” prompt affects the
results by a large margin (row 2—3), even leading to worse
performance than the absence of handcrafted prompts (row
1—2). The presence of an “Answer” prompt just before
the [MASK] token yields better performance in two input
designs (rows 3 & 4).

Although the impact of using handcrafted text prompts is
relatively small in few-shot experiments compared to zero-
shot experiments, they still improve enhances, particularly
on MSRVTT-QA and TGIF-QA datasets, as shown in Ta-
ble 8. Placing handcrafted prompts at the beginning (row
2), as is the case for learnable text prompts, leads to lower
performance. The best performance is achieved when hand-
crafted prompts are placed just before the question, answer,
and subtitles (row 4). Therefore, we choose to place hand-
crafted prompts according to row 4 for both settings.

By contrast, learable prompts are all placed at the begin-
ning. We empirically observe that other choices, e.g. plac-
ing half at the beginning of the input and half just before the
[MASK] token, are inferior.

C. Additonal Results

Zero-shot results Table 9 is an extended version of Ta-
ble 2, providing a comparison with state-of-the-art meth-
ods for zero-shot VideoQA. It includes results for additional
versions of Flamingo [1], which our method outperforms
all. It also includes two more methods that are not di-
rectly comparable with our zero-shot settings. In particu-
lar, BLIP [32] is pretrained on the VQA dataset [1 5], which
is not directly comparable as our setting does not involve
training on QA pairs. Similarly, Just Ask [55, 56] leverages
automatically generated visual question answering datasets;
although these datasets are not annotated by humans, the
model is still trained on the specific task.

Few-shot results An alternative approach for few-shot
VideoQA is in-context learning [1], using few, e.g. 32, la-
beled examples. To compare, we draw 10 tasks of 32 exam-
ples at random from 1% of training data of each downstream
dataset, we fine-tune the prompt vectors, that is, 0.75M pa-
rameters, on each task for 5 epochs and report mean and
standard deviation. This can be considered as test-time

prompt tuning [47] using task-specific annotated data.

Table 10 shows the results of few-shot in-context learn-
ing. Flamingo [1] uses a frozen auto-regressive language
model with trainable cross-attention layers that incorpo-
rate vision and language input, trained on an extreme-scale
dataset. The Flamingo-3B, Flamingo-9B, and Flamingo-
80B have 1.4B, 1.8B, and 10B learned parameters, respec-
tively, in addition to the frozen language model. By con-
trast, our method uses a lighter frozen language model and
lighter adaptation modules, resulting in only 101M param-
eters to learn, and our training data is a relatively small
amount of video-text pairs. Despite this, our method out-
performs Flamingo-3B [1] on MSRVTT-QA and is on par
with MSVD-QA.
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