Supplementary Material of "Adaptive manifold for imbalanced transductive few-shot learning"

Michalis Lazarou¹ Yannis Avrithis² Tania Stathaki¹ Imperial College London¹ Institute of Advanced Research on Artificial Intelligence (IARAI)²

A. Robustness against imbalance

We investigate the effect of increasing the class imbalance in Q by decreasing the value of γ used in $\mathrm{Dir}(\gamma)$. In the 1-shot experiments, it can be seen from Figure 4 that the performance of α -AM and α -AM_{PLC} is significantly better than α -TIM and α -TIM_{PLC} even though the performance of both methods drops as the classes become more imbalanced. Interestingly in the 5-shot experiment, it can be seen from Figure 5 that the performance of α -TIM and α -TIM_{PLC} is better than α -AM and α -AM_{PLC} when imbalance is greater. Nevertheless, when imbalance decreases it can be seen that α -AM and α -AM_{PLC} reaches or even surpasses the performance of α -TIM and α -TIM_{PLC}.

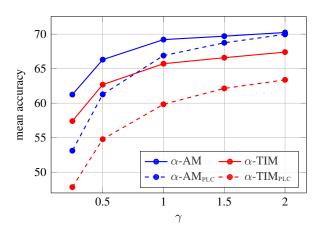


Figure 4. Effect of class imbalance parameter γ in $Dir(\gamma)$ on α -AM and α -TIM, 1-shot miniImageNet using ResNet-18. Class distributions are more imbalanced with lower γ .

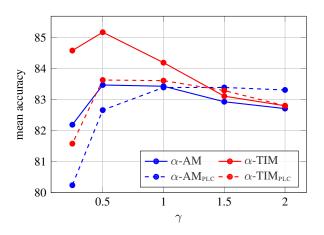


Figure 5. Effect of class imbalance parameter γ in $Dir(\gamma)$ on α -AM and α -TIM, 5-shot miniImageNet using ResNet-18. Class distributions are more imbalanced with lower γ .

B. Experiments with other backbones

Table 7 shows that by using the DenseNet-121 backbone, AM_{PLC} outperforms α -TIM and α -TIM $_{PLC}$ in both 1-shot and 5-shot settings. As in the experiments using ResNet-18 and WRN-28-10, we observe a significant performance gap of roughly 3.5% in the 1-shot setting.

Table 7. *Imbalanced transductive inference* on *mini*ImageNet and *tiered*ImageNet using the DenseNet-121 backbone. All results were reproduced using the official code provided by [39].

Метнор	miniIMA 1-shot	AGENET 5-shot	<i>tiered</i> IM 1-shot	AGENET 5-shot
DenseNet-121				
α-TIM [39]	70.41	85.58	76.55	88.33
α -TIM _{PLC} [39]	67.56	86.26	74.56	88.68
α -AM	73.67	85.47	79.95	89.34
lpha-AM _{PLC}	73.98	86.76	79.99	89.73