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A. Implementation details

In our experiments, we use a computational environ-
ment featuring 8 RTX 3090 GPUs with PyTorch [29]. We
perform transfer learning from models pre-trained on Ima-
geNet [42]. To ensure a fair comparison with previous stud-
ies [59, 46, 58], we configure the learning environment as
closely as possible. Specifically, we use ResNet101 [62] as
the backbone with final feature dimension d = 2048.

We use ArcFace [6] loss function for training, with margin
parameter 0.3. For optimization, we use stochastic gradient
descent with momentum 0.9, weight decay 0.00001, initial
learning rate 0.001, a warm-up phase [11] of three epochs
and cosine annealing. We train SfM-120k for 100 epochs and
RGLDv2-clean for 50 epochs. Previous work has shown the
effectiveness of preserving the original image resolution dur-
ing the training of image retrieval models [10, 8]. We adopt
this principle following [60, 46, 47], where each training
batch consists of images with similar aspect ratios instead of
a single fixed size. The batch size is 128. Following DIR [8]
and DELF [28], we carry out classification-based training
of the backbone only and subsequently fine-tune the model.
During fine-tuning, we train CiDeR while the backbone is
frozen, as shown in Figure A10.

For evaluation, we use multi-resolution representa-
tion [8] on both query and database images, applying `2-
normalization and whitening [36] on the final features.

NETWORK #PARAMS (M) #GFLOPS

R101 42.50 7.86
Yokoo et al. [60] 43.91 7.86
SOLAR [27] 53.36 8.57
DOLG [59] 47.07 8.07
Token [58] 54.43 8.05

CiDeR (Ours) 46.12 7.94

Table A10. Model complexity: Parameters (#PARAMS) and computational
complexity (#GFLOPS) of different models providing official code. Single
forward pass, given an input image of size 224 ⇥ 224.
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R101 BE SC AL POOLING #PARAMS (M) #GFLOPS

X 42.50 7.86
X X 43.58 7.91
X X X 43.88 7.93
X X X X 44.02 7.94
X X X X X 46.12 7.94

Table A11. Model complexity: Parameters (#PARAMS) and computational
complexity (#GFLOPS) for different components of CiDeR. BE: backbone
enhancement; SC: selective context; AL: attentional localization; Pooling:
spatial pooling (GeM) + FC.

B. Model complexity

Table A10 compares the model complexity1 of CiDeR
with other models. In this table, R101 is the baseline for all
related studies, all of which use the feature maps of its last
layer. We observe that our model has the least complexity af-
ter Yokoo et al. [60], which only uses GeM + FC. Table A11
shows model complexity for each of the components of
CiDeR, as defined in subsection 5.1.

C. More on revisited vs. original GLDv2-clean

Details To identify overlapping landmarks, we use
GLAM [46] to extract image features from the training and
evaluation sets. Extracted features from the training sets are
indexed using the Approximate Nearest Neighbor (ANN)2

search method. For verification, we use SIFT [23] local de-
scriptors. We find tentative correspondences between local
descriptors by a kd-tree and we verify by obtaining inlier
correspondences using RANSAC.

In addition to Figure 2 in section 3, Figure A8 shows
overlapping landmark categories between the training set
(GLDv2-clean, NC-clean, SfM-120k) and the evaluation set
(ROxford, RParis). Clearly, only GLDv2-clean has overlap-
ping categories with the evaluation set.

Table A12 shows the details of the 18 GIDs that are re-
moved from GLDv2-clean due to overlap with the evaluation
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Figure A8. Confirming overlapping landmark categories between training sets and evaluation sets (ROxford, RParis). Red box: query image. The query
image from the evaluation set in each box/row is followed by top-5 most similar images from the training set (for each query, top down: GLDv2-clean,
NC-clean, SfM-120k). Pink box: training image landmark identical with query (evaluation) image landmark.

# GID # IMAGES GLDV2 LANDMARK NAME OXFORD/PARIS LANDMARK NAME

1 6190 98 Radcliffe Camera Oxford
2 19172 32 All Souls College, Oxford All Souls Oxford
3 37135 18 Oxford University Museum of Natural History Pitt Rivers Oxford
4 42489 55 Pont au Double Jesus Oxford
5 147275 18 Magdalen Tower Ashmolean Oxford
6 152496 71 Christ Church, Oxford Christ Church Oxford
7 167275 55 Bridge of Sighs (Oxford) Magdalen Oxford
8 181291 60 Petit-Pont Notre Dame Paris
9 192090 23 Christ Church Great Quadrangle Paris
10 28949 91 Moulin Rouge Moulin Rouge Paris
11 44923 41 Jardin de l’Intendant Hotel des Invalides Paris
12 47378 731 Eiffel Tower Eiffel Tower Paris
13 69195 34 Place Charles-de-Gaulle (Paris) Arc de Triomphe Paris
14 167104 23 Hôtel des Invalides Hotel des Invalides Paris
15 145268 72 Louvre Pyramid Louvre Paris
16 146388 80 Basilique du Sacré-Cœur de Montmartre Arc de Triomphe Paris
17 138332 30 Parvis Notre-Dame - place Jean-Paul-II (Paris) Notre Dame Paris
18 144472 33 Esplanade des Invalides Paris

Table A12. Details of GIDs removed from GLDv2-clean dataset.

sets. The new, revisited RGLDv2-clean dataset is what re-
mains after this removal.

Classes with/without overlap Table A13 elaborates on
the results of Table 4 by comparing the original GLDv2-
clean training set with our revisited version RGLDv2-clean



METHOD TRAINSET OC OX5K PAR6K
MEDIUM HARD MEAN

ROxf RPar ROxf RPar

SOLAR [58] GLDv2-clean Y 82.1 95.2 72.5 88.8 47.3 75.8 77.0
N 81.6 95.9 66.1 84.8 44.3 70.6 73.9

SOLAR [27]† RGLDv2-clean Y 77.7 87.6 65.4 78.4 36.0 62.2 67.9
N 80.1 92.0 66.3 81.6 42.6 68.7 71.9

GLAM [46] GLDv2-clean Y 81.6 93.9 73.6 88.6 53.6 77.4 78.1
N 76.8 94.2 62.9 83.8 42.0 69.5 71.5

GLAM [46]‡ RGLDv2-clean Y 76.4 89.4 69.3 85.2 48.9 74.2 73.9
N 75.6 93.3 61.7 84.0 43.1 68.1 71.0

DOLG [47] GLDv2-clean Y 81.5 94.3 72.8 87.0 48.2 76.0 76.6
N 75.7 93.1 62.7 82.1 42.0 64.4 70.0

DOLG [59]† RGLDv2-clean Y 76.1 88.6 66.1 79.7 41.5 64.1 69.4
N 74.6 91.9 61.1 82.0 37.1 65.0 68.6

Table A13. mAP comparison of the original GLDv2-clean training set with
our revisited version RGLDv2-clean separately for overlapping classes
(OC) vs. non-overlapping for a number of SOTA methods. For GLDv2-
clean, we evaluate pre-trained models. For RGLDv2-clean we reproduce
training with ResNet101 backbone, ArcFace loss and same sampling, set-
tings and hyperparameters. †/‡: official/our code.

METHOD OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

ECNet [53] 88.2 91.5 66.8 78.3 42.0 55.4
NLNet [54] 89.4 91.8 66.5 77.6 39.1 53.7
Gather-Excite [12] 89.4 90.5 66.7 77.1 41.2 53.8
SENet [13] 89.9 92.0 67.3 79.4 42.4 57.5

Table A14. mAP comparison of different backbone enhancement (BE)
options. Training on SfM-120k.

separately for overlapping vs. non-overlapping classes. That
is, classes of the evaluation set that overlap or not with the
original training set. As expected, mAP is much higher for
overlapping than non-overlapping classes on GLDv2-clean.
On RGLDv2-clean, differences are smaller or even non-
overlapping are higher.

D. More ablations

Fine-tuning We employ transfer learning from models pre-
trained on ImageNet [42]. Following DIR [8] and DELF [28],
we first perform classification-based training of the backbone
only on the landmark training set and then fine-tuning the
model on the same training set, training CiDeR while the
backbone is kept frozen. Figure A10 visualizes this process,
while Figure A9 shows the training and validation loss and
accuracy, with and without the fine-tuning process. These
plots confirm that fine-tuning results in lower loss and higher
accuracy on both training and validation sets. This is cor-
roborated by improved performance results (CiDeR +FT)
in Table 6. Compared to the results without the fine-tuning,
we obtain gains of 2.7% and 3.1% on Ox5k and Par6k Base,
8.9% and 5.1% on ROxf and RPar Medium, and 16.5% and
11.4% on ROxf and RPar Hard.
Backbone enhancement (BE) We apply four methods in
a plug-and-play fashion [53, 54, 12, 13]. As shown in Ta-
ble A14, SENet [13] performs best. We select it for backbone
enhancement in the remaining experiments.
Selective context (SC) Here we compare ASPP [5],
SKNet [21] and our modification, SKNet†. The modifica-

METHOD OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

ASPP [5] 90.3 92.2 67.9 78.2 41.6 55.8
SKNet [21] 89.3 92.4 67.4 78.4 42.3 55.5
SKNet† 89.9 92.0 67.3 79.4 42.4 57.5

Table A15. mAP comparison of different selective context (SC) options.
Training on SfM-120k. SKNet†: our modification of SKNet [21].

SC AL OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

87.1 90.6 63.9 77.3 36.7 53.9
X 87.6 90.8 64.7 77.8 37.9 54.8

X 89.7 92.0 66.8 79.4 41.8 57.5

X X 89.9 92.0 67.3 79.4 42.4 57.5

Table A16. mAP comparison of learnable-fusion (X) vs. sum. Training on
SfM-120k. SC: selective context; AL: attentional localization.

BACKBONE OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

Attention-based pooling 89.8 92.3 67.2 79.4 41.8 56.5
Mask-based pooling (Ours) 89.9 92.0 67.3 79.4 42.4 57.6

Table A17. mAP comparison of pre-trained model with attention-based vs.
mask-based pooling. Training on SfM-120k.

tion is that instead of a simple element-wise sum to initially
fuse multiple context information, we introduce a learnable
parameter (5) to fuse feature maps based on importance.
As shown in Table A15, our modification SKNet† performs
best, confirming that this approach better embeds context
information.
Sum (baseline) vs. learnable fusion We introduce learn-
able parameters (5) to fuse multiple feature maps for SC and
AL. Table A16 compares this learnable fusion with simple
sum for both SC and AL. We evaluate four different combi-
nations, using learnable fusion and sum for SC and AL. The
results indicate that learnable fusion improves performance
wherever it is applied.
Attention-based vs. mask-based pooling Because of the
binary masks (3), the pooling operation of our attentional
localization (AL) can be called mask-based pooling. Here
we derive a simpler baseline and connect it with attention
in transformers. Given the feature tensor F 2 Rw⇥h⇥d, we
flatten the spatial dimensions to obtain the keys K 2 Rp⇥d,
where p = w ⇥ h is the number of patches. The weights
of the 1 ⇥ 1 convolution f ` can be represented by query
Q 2 R1⇥d, which plays the role of a learnable CLS token.
Then, replacing the nonlinearity ⌘(⇣(·)) by softmax, the
spatial attention map (1) becomes

A = softmax(QK>) 2 R1⇥p. (A7)

Then, by omitting the masking operation and using the at-
tention map A to weight the values V = K 2 Rp⇥d, (4)



Figure A9. Comparison of the accuracy and loss for training and validation with (red) vs. without (black) fine-tuning.
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Figure A10. Fine-tuning process. (a) No fine-tuning. (b) Our fine-tuning.
: frozen.

simplifies to

F` = A> � V 2 Rp⇥d, (A8)

Finally, we apply spatial pooling fp, like GAP or GeM. For
example, in the case of GAP, the final pooled representation
becomes

fp(F`) = AV 2 R1⇥d, (A9)

which is the same as a simplified cross-attention operation
between the features F and a learnable CLS token, without
projections. By using GeM pooling, we refer to this baseline
as attention-based pooling. Variants of this approach have
been used, mostly for classification [19, 61, 37, 52, 33]. As
shown in Table A17, our mask-based pooling is on par or
performs better than the attention-based pooling baseline,
especially on the hard protocol.
Feature dimension After applying spatial pooling like
GeM, we apply an FC layer to generate the final features.
The feature dimension d is a hyperparameter. Table A18
shows the performance for different dimensions d. Interest-
ingly, a feature dimension of 2,048 works best, with larger
dimensions not necessarily offering any more performance
improvement.

DIM OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

4096 87.8 90.2 64.8 76.8 38.1 52.8
3097 89.8 90.5 67.4 76.9 42.5 53.0
2048 89.9 92.0 67.3 79.4 42.4 57.5

1024 88.9 91.2 65.7 76.7 40.1 52.0
512 85.3 89.2 61.9 74.4 36.5 48.9

Table A18. mAP comparison of different feature dimensions d in our model.
Training on SfM-120k.

QUERY DATABASE OXF5K PAR6K
RMEDIUM RHARD

ROxf RPar ROxf RPar

Single Single 90.5 91.5 67.0 77.4 40.3 55.0
Multi Single 92.6 92.9 68.4 79.2 41.2 56.5
Single Multi 87.1 90.4 64.8 77.5 39.1 55.9
Multi Multi 89.9 92.0 67.3 79.4 42.4 57.5

Table A19. mAP comparison using multiresolution representation (Multi)
or not (Single) on query or database images. Training on SfM-120k.

BACKBONE OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

Facebook 88.2 92.7 65.3 78.8 38.6 56.5
TorchVision 89.9 92.0 67.3 79.4 42.4 57.5

Table A20. mAP comparison of pre-trained model from TorchVision vs.
Facebook. Training on SfM-120k.

Multi-resolution At inference, we use a multi-resolution
representation at image scales (0.4, 0.5, 0.7, 1.0, 1.4) for both
the query and the database images. Features are extracted
at each scale and then averaged to form the final representa-
tion. Table A19 provides a comparative analysis, with and
without the multi-resolution representation for query and
database images. We find that applying multi-resolution to
both query and database images works best for ROxford
and RParis [34].

ImageNet pre-trained models Different research teams
have released models pre-trained on ImageNet [42] for major
image classification tasks. It is common to use a pre-trained
ResNet101 model from TorchVision [24]. Recent works [59,



WARM-UP OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

89.9 92.0 66.7 78.9 41.5 56.7
X 89.9 92.0 67.3 79.4 42.4 57.5

Table A21. mAP effect of warm-up in our model training. Training on
SfM-120k.

WHITENING OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

85.8 90.7 60.5 77.0 31.7 54.2
X 89.9 92.0 67.3 79.4 42.4 57.5

Table A22. mAP effect of whitening in our model. Training on SfM-120k.

METHOD OXF5K PAR6K
RMEDIUM RHARD

ROxf RPar ROxf RPar

Fixed-size (224 × 224) 69.0 86.0 42.2 69.5 15.8 45.0
Group-size (Ours) 89.9 92.0 67.3 79.4 42.4 57.5

Table A23. mAP comparison between fixed-size (224⇥ 224) vs. group-size
sampling. Training on SfM-120k.

20] have also used pre-trained models released by Facebook3.
As shown in Table A20, we find that the TorchVision model
works best.
Warm-Up To enhance model performance, we employ
a warm-up phase [11] during training, consisting of three
epochs. Table A21 shows that the warm-up phase improves
the performance.
Whitening We utilize the supervised whitening method
pioneered by Radenović et al. [36], which is common in
related work to improve retrieval performance. Table A22
shows the performance gain obtained by the application of
whitening.
Fixed-size vs. group-size sampling Several previous stud-
ies suggest organizing training batches based on image size
for efficient learning. Methods such as DIR [8], DELF [28],
MobileViT [25], and Yokoo et al. [60] opt for variable im-
age sizes rather than adhering to a single, fixed dimension.
Our approach employs group-size sampling [60, 46, 47],
where we construct image batches with similar aspect ra-
tios. Table A23 compares the results of fixed-size (224 ⇥
224) and group-size sampling. We find that using dynamic
input sizes to preserve the aspect ratio significantly improves
performance.

3
https://github.com/facebookresearch/pycls


