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CHAPTER IX

On Trinomial Factors.

143. The means by which linear factors of any polynomial may be found,
we have seen above, is through the solution of an equation. If the polynomial is
a + Bz + vzt 4 52 + ez + -+ and a linear factor is of the forn p - gz,

that  whenever p — gz is a factor of the function

it s clc

o+ Bz + <~m + -+, and when we substitute 2 for z, then the factor

q

p — ¢z becomes zero and the proposed function vanishes. It follows that p — gz

is a factor or divisor of the polynomial a + Bz + vz + 62 + ezt + - -

2 3 4
whenever « + mb ap <Nm + mbw. + m.mﬂ + -+ = 0. Conversely, il all the
q q q q
roots £ of this equation have been extracted, they will give all of the linear fac-
q
tors of the proposed polynomial o + 2z + J:NM + 823+ -+ | thatis p — gz.

It is clear now that the number of these linear factors is determined by the
grealest power of z.

144. Irom time to time it happens that complex linear faclors are found
only with difficulty. 1t is for this reason thal I present in this chapter a special
method by which the complex linear factors can [requently be found. Since com-
plex linear factors are so paired that the product of two of them is real. We will

find those complex factors if we study the quadratic factors of the form
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p — gz + rz? which are real, but whose linear factors are complex. If the func-
tion a + Bz + yz2 + 82° + - has only real quadratic factors in this form of

a trinomial p — ¢z + rz?, then all of the linear factors will be complex.

145. A trinomial p — gz + rz? has linear factors which are complex if

4pr > ¢%, that is if lﬂehl < 1. Since the sine and cosine of angles are less
2VY pr

than 1, a trinomial p qz + rz? has complex linear factors if ety equal to

2Vpr
the sine or cosine of some angle. Now let —4— = cos ¢ or ¢ = m/\mﬂ cos ¢,
2Vpr
and the trinomial p — gz + rz? has complex linear factors. Lest some irra-
tionality —cause problems, we assume the trinomial has the form
p? — 2pgz cos & + ¢22%, whose complex linear factors are
gz — p(cos d + ¢ sin ¢) and g¢z— p(cos b — i sin ). It is clear that if

cos ¢ = * 1, then sin ¢ = 0 and both factors will be equal and real.

146. Given a polynomial o + Bz + J.NN +8z3 4+ -+, the complex
linear factors can be found if the values of p, ¢, and the arc ¢ are such that the -

trinomial p® — 2pgz cos ¢ + Qwuw is a factor of the function. In this case, the

complex linear factors will be qz — p(cos & + 1 sin ) and
qz — p(cos ¢ — 7 sin ¢). For this reason, the given function vanishes if we sub-

" ) i ) s
stitute either z = W?Cm ¢ + 1sind)or z= ‘NxAnCm ¢ — i sin ). When each

q q

of these substitutions is made, we oblain two equations which can be solved for

both the fraction £ and the arc .

q
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147. 1L might seem at first that these substitutions for 2 would cause

difliculties, but when we use some of the results treated in the preceding chapter,

things go rather expeditiously. We have seen that
(cos b *+ 1 sin b)" = cos nd *+ 1 sin nd, so thal the following formulas arc

used  when substituting for the powers of =z In the first factor,

2
2= N?Cm ¢ + 1 sin d), = .mtwnAnOm 2¢ + 1 sin 2d),
q q
3 tu g 4 wA
2= Iw?cm 3¢ + ¢ sin 3d), 2" = IMAoOm 4¢ + 1 sin 1), ete.
q q

2
In the second factor, z = LN?Cm ¢ — 1 sin ¢), 2% = .Nuls?o.m 2¢ — 1 sin 2¢),
q q

3 4
2t = %w_‘?:x 3 i sin 3), 2t = .NAIT.C,; 4 — 1 gin 4d), ete. Tor the sake of
q q

brevity we let L — ; and then make the substitutions to obtain the two equa-
q

tions 0 = a + Br cos ¢ + J;woOm 2¢ + Sricos SX G OIERD
+ Bri sin ¢ + vriisin 24 + 5r3i sin 3¢ + -+ and
0=oa+ Brcosd + yricos 24 + dricos 3p + - -

- Bri sin ¢ — <am_. sin 2= or3 sin 3¢ — - - - .

148. If these two equations are added and subtracted, and in the latter case
also divided by 21 we obtain the two real equations
0=oa+ Brcosd + )\LSm 2¢ + dr3cos 3¢ + -+ and
0= Brsind + vrisin 2 + 8r%sin 3¢ + - - - . In fact, given the polynomial
iR G vzt + 828 + e2' + -+ we can immediately write down the two

In the first we put, for each power of z, z" = r"cos nd and in the

sccond z" = r"sin nd. Since sin Op = 0 and cos Op = 1, for 2% in the first
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equation we put 1 and in the second we put 0. If now we can find the two unk-

hE " b v .
nown quantities r and ¢ from the two equations, then, since r = le we will
q

have the Lrinomial factor, p? = 2pgz cos &b + ¢*2%, of the given function and so

also the two complex linear factors.

149. If the first equation is multiplied by cos md and the second by
sin m¢, then by addition and subtraction the following equations result.
0=« cos md + Br cos(m — 1) + yricos(m — 2)d
+ 8r3cos(m — w.v% + -+ and
0= acos md + Br cos(m + )b + yricos(m + 2)d

+ dricos(m 4 3)b + - . Any two equalions of this kind determine the
unknowns r and ¢. Since frequently there are several different solutions, we
obtain several different trinomial factors, indeed we obtain all such factors in this
way.

150. In order that the use of these rules may become clearer, we will inves-
tigate trinomial factors of certain functions which occur rather frequently. Once
we have these results, they will be ready at hand for future use. Let the first
such function be a™ + z"; we will determine the trinomial factors of the form

p? — 2pgz cos b + ¢%z%. When we let r = P e have the following two equa-

q

tions: 0 = a" + r" cos nd and 0 = r" sin nd. The second of these equations
gives sin nd = 0, so that nd = (2 + Dw, or nd = 2k, where k is an
integer. We will treat these Lwo cages separately, since the cosines are different,

being respectively cos(2k + 1)w = — 1 and cos 2km = 1. It should be clear

Il

that the choice will be nd = (2k + 1), since with cos nd = — 1, we have



; 2k +
0l = a® — p* " Since'r =tg'= Nwim?:mw =gq,q = 1,and ¢ = g
q n

: 2k + q
IL follows that a factor of a™ + z" will be a® — 2az comEﬁ + 2% Since
n

any integer 2:,_ be substituted for k, several factors of this form will be pro-

duced, but not an infinite number. This is because when 2k + 1 becomes larger

than n the factors begin to reoccur. This is because cos(2m + ) = cos ¢, bul

this will become clearer from examples. If n is an odd number, when
2

2k + 1 = n, then there is a quadratic factor a® + 2az + 2% From this it does

. . 3 v
| uVN i factor of a™ 4 2" since from seclion 148 we nee

not follow {

that or

one cquation resulls. It is clear that only a + 2z is the divisor of
a™ + z™ This rule applies whether cos ¢ is equal to +1 or -1.

EXAMPLE

We will develop a few cases so that we can see more clearly what the

are. In these cases we distinguish between the odd and ecven values of n. If
n = 1 then the function is @ + z and the factor is ¢ + 2. If n = 2, then the

function is a? + 2% and the factor is a¢® + 2% If n = 3 then the function is

1
a® + 2% and the factors are a® — 2az cos .w|,= + 2%and a + 2 I n = 4 then
. : 1
the function is a* + z? and the factors are a? — 2az cos m.d + 2* and
P e ) e o sl ali) 5 i o)
a 2az cos i m + 2°. If n =5 then the function is a” + 2” and the factors
1 3
are a? — 2az cos = o 2% 4% — 2az cos -t 2z and ¢ + 2 Il n = 6 then
5 5
: : 1
the function is a® + 2° and the factors are a? — 2az cos Wﬂ + 22
P 3 2 2 _ 9 2 e
a 2az cos —m + z° and a 2az cos —m + 2°. From these examples it is

6 6

clear that all of the factors have been obtained when for 2k + 1 all odd numbers

less than n are substituted. In those cases when a perfect square is produced,

only its square root is a factor.

151. 1If the given function is e¢"™ — 2", then a trinomial factor is

pY — 2pgz cos b + ¢%r M we let r = ..ﬁl‘ then 0 = a" ~ r"cos nd and

qa

0 = r"sin nd. Once again sin nd = 0, and nd = (2k + )7 or nd = 2kmw. In

Lhis case, however, we make the second choice, so thal cos n = 1, with
2k
(=St T Poeal 1 tollows that p =, q = 2 ﬁ‘
q n
. ' . 9 c 2k 2 .
so that the trinomial factor will be ¢ — 2az cos + 2% In this formula we
n

let 2k be equal to all even integers no larger than n to obtain all factors. Con-

cerning factors which are perfect squares, we follow the rule given above. First

we let k = 0 Lo obtain a® — 2az + 2* from which we take the square roob,

2

a — z Likewise, if n is even and 2k = n, then we obtain a* + 2az + 2% and

a + zis a divisor of a" — 2™

EXAMPLE

As in the previous example we distinguish between the odd and even values

of n. If n = 1, then the function is a — 2 and the factor is a — 2. If n = 2

then the function is a® — 2% and the factors are @ — z and a + 2z If n = 3,

then the function is a® — 2% and the factors are a — 2z and

; o) P . "

a® — 2az cos nux,q + 2% If n = 4 then the function is a* — 2* and the factors
2 i

are @ — z, a®> — 2az cos —7 + 2%, and @ + z If n = 5 then the function is

4



|

2
a® = 2% and the factors are a — z, a® — 2az cos .w!: o+ Nu“ and
2 4 2 i Seigt vt ey Yy .
a® = 2az cos —m + 2" If n = 6, then the function is a z° and the factors
5
2 4
ane @ — 2, a? — 2az cos S + Nw‘ a’® — 24z cos —w + NN and a + 2

6 6

152. These examples confirm what had been stated earlier, namely, that

cvery polynomial, can be expressed as the product of real linear factors and real

e factors. We have seen that functions with the form a™ + »

quad

degree, can be expressed as a product of real quadratic factors and real linear

:tors. We progress to more complicated functions such as a« + Bz" + vyz*". If

this function has two factors of the form m + 62", then the factorization is clear

ion

from what we have just considered. We will show how Lo resolve such a [
b o v . . .

o+ B2" 4 yz™" into real linear or real quadratic factor in the case where there

are nob two real factors of the form v + 02",

2n 2n

153. We consider this function a¢*" — 2a"2"cos ¢ + 2°" which cannot be

expressed as the product of two real factors of the form m + 6z". If we suppose

real quadratic factors to be EN + 2pgz cos ¢ + Qwuu. when we

e UG following two equations:
q
0= a® — 2a"r" cos g cos nd + r2"cos 2n¢ and
0= — 2a"r"cos g sin nd + r’"sin 2nd. If instead of the first equation, we
have from scetion 149, when m = 2n, 0 = a®" sin 2nd — 2a"r"cos g sin nd.

This  equation with the second equation above give r = a. Then

sin 2nd = 2 cos ¢ sin nd, Since sin 2nd = 2 cos n sin nd, it follows

cos ndp = cos g. Since cos(2km * g) = cos ¢, we have nd = 2%kmw *+ ¢ and

123
2kw * ¢ ;
b = We now have the general quadratic factor of the proposed form
n
2k x
a = Yy oos =ETT Ly 2%, and all factors appear when we let 2k be all even

n
integers no greater than n, as we shall see in the following.

EXAMPLE

»ocases in which noig I, 2, 3, 4, ete. If the function is

We consider

g ; o o
a® ~ 2az cos g + 2%, then the lactor is a? — 2az cos g + 2% Il the function is
49, 2 ] 2 g 2
a 2az2° cos g + 2", then the two factors are a¢* — 2az cos 9 + Z€vand
O MTREE ; . . :
a’® — 24z cos !nml\a + 2%, that is, a® + 2az cos lwnn + 22, If the function is
0 :
a® — 2a°2% cos ¢ + 2% then the three factors are a® -~ 2az cos m + 2%
. 27 ¢ ; . 27w + Dl 3 ;
a? ~ 2az cos 51.w|g it \“ and a® — 2az oOmll@'h + 2% If the function
8
a® — 242" cos g + 2% then the four factors are a? — 2az cos W + 22
Ml == 2T +
e* = 20z cos —94 4 2%, a® — 2az cos L4 4 2%, and
4 4
. 1m + ¢ ’ " p . .
a’® —~ 2az cos ll.MIl& + 2% that is, a® + 2az cos W + 2% Il the function is
N ; g .
a' - 2a%2° cos g + 2, then the five factors are a? — 2az cos W + 2%
5
y Qe 9 2am k] ;
a’ - 2az cos L—94 4 NN‘ a? ~ 2az cos AR =+ \_
5 5
clayr o 4 + . A
a® — 2az cos !l«h i NN_ and  a® — 2az cos w g + 22 Again it s
5 5

confirmed in these examples that polynomials can be expressed as the product of

real linear and real quadratic factors.
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154. Now we can go further and consider a function of the form
o+ Bz + y2®" 4+ 82°", which certainly has one factor of the form w + 02"
and we have seen how to express this as a product of real linear and real qua-
dratic factors. The other factor is of the form v + kz" + \z*", which, according
to the preceding section, can also be expressed as a product of real linear and
function

real quadratic factors. Next we consider the

a + Bz + vz + 82°" + ez'". This always has two real factors of the form
M + 02" + 122" and these likewise can be expressed as products of real linear

and  real quadratic  factors. Then  we  consider the  function
a + Bz" + vz + 82%" + ez + [2°", which always has one factor of the
form v + 02", while the other factor is of the form just considered. It follows
that this function can be expressed as a product of real linear and real quadratic
factors. If there were any doubt that every polynomial can be expressed as a

product of real linear and real quadratic factors, then that doubt by this time

should be almost completely dissipated.

155. We can extend this factorization also to infinite series. For example,

2 3 4
5 T
we have seen that 1 + — + —— + § bt g v+ 3 = g% We have

1 1-2 1-2-3 1-2-3-4

also seen that e® = (1 + z/j)’, where j is an infinitely large nuumber. It

3 z? z°
becomes clear now that the series 1 + — + — + —— + -+ has an
1t 12 123
inite number of lincar factors, all of them equal, namely to 1 + H Il we
d
remove the first term from this series to obtain
7 z? z° ;
— 4+ —+ ——+ -+ =¢*=1=(1+ z/j) — 1. When we compare
| 1:2 1:2:3

this with the form in section 151, where we let ¢ = 1 + mﬂ n=7,and z = 1,

J

2k
i

each factor has the form (1 + z/5) — 2(1 + z/5) cos + 1. When all even

integers are substituted for 2k we obtain all of the factors. lowever, when

2
2k = 0 we obtain the perfect square alm as a factor. For the reasons given
7]

£

)

before we take only the square root, It follows that z is a factor of the func-

tion e* — 1, but that is already obvious. To find the other factors we have to

note that the arc wlw,:. is infinitely small and according to section 134 we have

J
2% o

cos —mw =1 — 2=
J J

The other terms in the series are neglected since j is

infinitely  large. It  follows that each  factor has the form

2 2 2 2
'al.m + $ ? 4 ml\awl 2z and e® — 1 is divisible by 1 + = + .||M||u| There-
J J; ) J 4k

2 3
forg gk = 10= il % B g 050 4
1 +2 1:2-3 1-2-3-4

+ -+ | and except for the fac-

tor z, it has the infinite product of factors

2 2 2
1+ 2+ =+ 2+ =+ 2+ X
J 4 ] 167 ) 36
2
H+I&...+I|W.INI....
J 64

156. Since all of these factors contain a term which is infinitely small 1&.._
J

which, since it is in each faclor, and through the multiplication of all the factors

; s " T 7 g
which are HMN in number, there is produced a term 3 so — cannot be omitted.
)

In order to avoid this inconvenience we consider the expression



Ch el = (R ) Ll G HC.%.
3 5
7 G 43
= Dill== ik it sl s cel
1 16253 1:2:34°5 §
: T z? z* s
e T =1 - Y + Yo dan + -+ . We compare this with the expression
in section 151, with n = 5, a = 1 + N; and z = 1 — N It follows that the
) )
factor of this series will be
2 2
a’ — 2az cos L +quw+m.wu|lw H!.H.Iw nOmW\.m‘:.
it J J J
4z 4k? 4k’nw%z® 2k k2m®
= Fu it s\.m..ﬁw = ]H.m.at‘ since cos —w = 1 — W%! The function
J 4 J J 3
- T z?
e’ — ¢ 7, therefore, is divisible by 1 + MM,:,N — —5» however, we omit the
)
"
— since even when multiplied by j, it remains infinitely small. Further,

]
when k = 0, the factor will be z. For these reasons, the factors can be given in

the order in which they are calculated:

LA 2 2 2 2
ht|a =zl|l + &IN 1 + |ma1ﬂ — + {Hinl 1 + ||H|I
2 T 4w O 16m?
4 2 4 6
L+ =] =zl + 2=+ 2 _ ¢ z +
251 123 1:2:3:4°5 1:2:3:4-5-67

We have given each of the factors, multiplied by a constant of the same form so

1t when the factors are actually multiplied, the resulting first term will be z.

¢ + ¢ F 2 4
2 2 =1 + I“W“ll + H|. -
2 1-2 1-2:34

(o
~1

In  the same way,

(L+ /7)) + (1= z/7)
2

. When this expression is compared to a" + 2"
v

T ’ "
where we let a =1 + =, 2z =1 — H; and n = j, we obtain each factor as
J i}
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a® — 2az cos SdLil o+ 2
n
2
2z 9, k + i
=2+ v 201 = 2%5%) cos 4 ] . Since
.N.w n
b &t 2
cos t m=1- w\ow._wwu w2, the factor takes the form
J J
2 2
mml e ﬁpdﬁ where we have omitted a term whose denominator is j*,
J 3)
N.N R.A 2
Since each factor of 1 + a ate .:‘!Iw!\_a + - should have the form 1 + «az?,

we reduce the factor already found to the desired form when we divide by

(2k + 1)* ,

A M
5 7°. We then have the factors in the proper form 1 + ;b||.mltm‘|m.
J (2k + 1)°m

It follows from this that we can find the infinite product by substituting for

D) | successively all odd integers. Therefore we have
z g 2 4 6
Lo g L R e oo
2 1-2 1:2:3:4 1162 Judizhi6
(it a1+ 40 1+ 4P (1 + 452
m? 9’ 2572 4972 :

158. If we let « be an imaginary number, then these exponential expressions

can be represented by sines and cosines of a real arc. lLet z = 21, then

au.. e oz .3 Vm vq
1!«56 = gin 2 = z - 4 + = . i —
21 123 1-2:3-45 1:2:3:4:5:67
which has an expression as an infinite product:
2(1 = 2?1 = 24?1 = 229w (1 - 22en?)(1 — 225wt - -,
thatl is, we can write sin z = z(1 ~ z/mw)(1 + 2/w)(1 - z/2mw)
(L + 2/2w)(1 — 2/3w)(1 + 2/3w) -+ . Whenever the arc z has a length such

that any of the factors vanishes, that is when 2z = 0, = w, * 2m, etc. or gen-

P
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z = * kw, where k is any integer, then the sine of that arc must

cqual zero. But this is so obvious, that we might have found the factors from

Lhis

QO

fact. In like manner, since —————— = cosz we also have

o= (1 2 - a4ty (1 - antesed)(l 4244978 - <+ | or when

these  factors are themselves factored, we obtain the expression

cos z = (1 = 2z/m)(1 + 2z/m)(1 — 22/3w)(1 + 22/3m)
(1 - 22/57)(1 + 22/57) - - - . From this it again becomes obvious that when
2k + 1 i q
2= g then cos z = 0, which is clear from the nature of the circle.
159. From section 152 we can also find the factors of the expression
5 z? z!
el 2co3¢9 + ¢ =2l ~cosg + — + ——— + -+ |, Thig expres-
! TR TX Y “
sion can also be written as (I + H\\.v\ = 2icosFgt (il — &\3\_ in which we let
2n = j,a =1+ M; and z = 1 — la. It follows that each of the factors has
J )
the form
; * . ¢ 9 p %4
a’  2az cos D% o + 22 =2+ Waﬂ. - 2(1 — z%35%) cos Eb
n 9 )
i Sy
Sinee  cos wﬂw»ﬁﬂmv = | .MIFMVQ< the  factor has the for
J J
e s G 2
gl ;t\mﬂ.ni‘ or the form | + l!%c;.e!ll.;m., Il the expression is divided
J (2km = g)
by 2(1 — cos g), so that in the resulting infinite series the constant term is I,
T _ -z
then we have the following infinite product: £ dpaigt e
2(1 — cos g)
2 2 2
= t+ —F—+ —— 1+ —2—
(2w -~ ¢) (2m + g) (4w - 9¢)

129

2 2 2
—+|I|lwa||.||| (| et LR H+«\’I&l||....

(4w + g)? (67 — QVN (6w + Eu

Furthermore, if we substitute 21 for z, then

008 & = SO 0: o i a2 Dl i 2 i 2
1 -~ cos g g g 200 = 10, 29~ ¢
[ - —% ]+ —Z 1 - —= 1+ —= e
PR ar (] 2m + ¢ 4w - g 4m — ¢
2 4
=l i 2 5 2
12(1 — cos ¢) 1-2:3-4(1 ~ cos g)
40

5 + o B
1:2:3:4:5:6(1 ~ cos ¢)

Now we have an infinite product expression for this infinite series.

160. It would be convenient to be able to find an infinite product expression

for the netion e®'T ¢ 7F When we  bransform it into  the form
e 2
b T @ — ; "
I+ —— | + |l + —— | we can compare it with a’ * 2/, which has
J J
a factor a® — 2az cos Sﬁ + 2% where m is odd when the sign is positive and
i
m is even when the sign is negative. Since j s ly large,
mIr m i’
CON =M1 Imlml Then  the general factor has the form
J b
2o
’ m b + g
(¢ = 2)% + ll.w.:lam. In the present case we have a = | | 4
] /
e — g o+ 2z)?
z=1+ ——, s0 that (a — 2)! = wl.h; )
J s
bR be + (¢ — b)z — z?
az = 1 + - R ( Jo . When these 1+ have
2
J g
! made and the result mulbiplied by .\,..J wu
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formation for these factors is sufficiently simple and uniform. [Furthermore, from
the multiplication of these expressions, there arise the expressions found in the

previous section.

= )
s Ik g : 2k
sulg) o S TTJ_ x %= wg = s> EGhe
X ¥ =o hN«.lv ) K z0
G (e T e -
Wm»«vﬁ; mfb!m i W\mew\t Nwﬁwwiv c (k-1)
ol 2
- T -%) =
%W?& Ler m k2
c(@)=1. =
SRR, R
C mﬁV! r..M.le fldy = h 3 W. \M.J
c(@)= 4 3 8) ()= Lfeo- 3
hmwvnﬂ W\ W ﬁ\ \Woﬂv mﬁva.TIW‘w ﬁﬁmﬂv..‘\w.lﬂvv =
U o0 Fd- Z4)
g 1 i\ .
A h?vn &\ W.. A\ o .mmm&,”o\p.w mno\v +.~_uromn3+w~vvu =
. 1 [coe®-c) Z 5 TD2 e

¢

. oA C . A1 -
2y, dE -2 5
(el A

= “&»“\N‘

CHAPTER X

On the Use of the Discovered Factors to Sum Infinite Series.

165. If 1 + Az + Bz* + C2° + D2* +
= (1 + az)(1 + Bz)(1 + yz)(1 + 8z) * - , then these factors, whether they
be finite or infinite in number, must produce the expression
I+ Az + B2+ b+ D2+ . when they are actually multiplied. 1t
follows  then  that  the  coeflicient A in  cqual to the  sum
at+ B+ yt+td+et The coefficient B is equal to the sum of the pro-

ducts taken two ab a time. Hence

B

I

af + ay + ad + By + Bd + yd + Also the coefficient C is equal

to the sum of products taken three at a time, namely

1l

C = afy + apd + Byd + ayd + We also have D as the sum of pro-
ducts taken four al a time, and J is the sum of products taken five al a lime,

etc. All of this is clear from ordinary algebra.

166, Since the sum o + B + y + 8 + - is given along with the sum of
products taken two at a time, we can find the sum of the squares
a? + B2+ 4%+ 8% + - -+ | since this is equal to the square of the sum dimin-
ished by two times the sum of the products taken two at a time. In a similar
way the sums of the cubes, biquadratics, and higher powers can be found. If we

et P =a+B+y+d+e+



Q=o>+pE+y + 8"+ + -
R=o*+p+y"+83+S+ -
S=a'+ '+ 4+ 8"+t -
T=a®+p%+4"+8%+5+ -
«\HQa+Ra+\<a+w=+me+

Then P, Q,R,S, T, V, etc. can be found in the following way from

AVHBIRCEEDE ete. P =A, @ = AP - 2B, R = AQ — BP + 3C,

g
=

S = AR BG + CP. — 4D, T =AS -~ BR + CQ ~ DP + !

BS + CR DQ + EP — 61", ete. The truth of these formulas is

intuitively clear, but a rigorous proof will be given in the differential calculus.

167. Since we found above, in section 156, that

i St ¥ 12 4 .0
b s+ A e -
2 1:2:3 1:2:34°5 loeotyy
2 2 2 2 i 2
=zsl1+ S|+ Hlh+ Z|h+ =S+ “
s 4 97 167r 25
it follows that
2 4 8
T+ =t —— =T .
1623 1:2:3-4:5 16257,
2 2 2 2
=M1+ Sl o iy S+ 2.
s 41 9 161
If we let g = ﬁN?
2 4 6
1L s ﬁ«+ i 22 + = 2+
1623 1:2:3:4-5 1:2:34-5:6-7
= (1+ 2)(1 + 2/4)(1 + 2/9)(1 + 2/16)(1 + 2/25) = = - .
2 4 )
We wuse the rules stated above where A = H'J B = |>=.I~ C ==
6 120 5040
g8
D = ———— etc., and we also have
362880

TN T

P=1++4+ 1
4 9 16 25 36

’
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Q=1+ —4 —+ ——+ —+ — + ",
/ P [
1 1 ! 1 1
R =1+ — t'— + —=ot —=ik —=t " o,
£ 9 Y Y e
1 1 1 1 1
S=1+—+ — + + ot
1 9* 16" 251 36
1 1 1 1 1
T=1+—+—+ — + bt
FLEREN T T L L
2 4 )
P v ST BRI 1T
I'rom the values of A, I3, C, D, cte, we see that P = o Q = =gl R = 55"
8 10
™ T
S = , T = , ele.
9450 93555
168. It is clear that any infinite series of the form
18t A ot ¥ ot L + + - provided n is an even integer, can be expressed
N: \_:

in terms ol a7, since it always has a sum equal to a fractional part of a power of
w. In order that the values of these sums can be seen even more clearly, we set

down in a convenient form some more sums of these series.

{ 1 1 1 o v g
—_— 4 =+ =+ =+ = — -
b 2 K 38 4* 5? 123 1
1 1 1 1 9? 1 4
—_—t = 4+ =4+ = = =1
s wA i3 ma A¢ m» 12345 3
1 1 1 1 e e
$ — + =t =+ =+ =L g
: RN, ! 455 st 127 3
1 il il 1l 98 31n
— 4 —+ =+ =1 - = =1
o o8 35 48 58 1:2:39 5
1 1 1 1 08 B
P N s e —_F+ = ——— =
1+ w_c + w_c i &E + m_c 1:2:3-:11 wﬁ
10
~ + |H| + |H1 + IHII + 'P.l L Ly w @@H ﬁ.;
L ik 412 512 1:2:3+-13 105
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12
N a2 3y
,.L_ _,.__ ,_Z mZ 1-2:3-15 1
B 1 1. . 2
. 5 T 1-2:3:17 15
_ I 1 1 DA 43867 |4
| o = e o e o e T e — ”
! u_x w_m A_m m; 1:2:3:+19 21 L
RN SR R B B 1222277
mmc uuc Amc .mnc 1:2:3+21 55
1 1 il 1
|9 y + Nwﬂ. + |A|m|m| ap .awu -+ _
02 ONAE
;4 2L BT 2" 1181820455
o2d b3 [42:3:7+25 273
RO T L N ik 76977927 20
\.t_: ;...: ,_.~.= .:.\: 1:9:3+497 1 y

We could continue with more of these, but we have gone far enough to sce a

371057 1

5 691 35

1eo which at 2 p

3
m ’

1 1
quite irregular, 1,—, —,
| g 3’3

but it is of ¢

ary usefulness in several places.

169. We now treat in the same manner the equation found in section [57.

¢ we saw that

£ =T 2 4 6
«.|+m§|| =1 + i o z o z = o o
2 1-2 1-2:34 1:2:3-45-6
2 2 2 2 2
= _+ﬁl H+mmw ~+§n 1+ SN coe L Welet 22 = TE,
™ 9w 25 49 4
2 4 6
then I + ——z + i NN~+ T u~u+...
124 12:34-4 1264
(1 2)(1+ 2/9)(1 + 2/25)(1 + 2/49) - -+ . We now use the formulas,
2 4 6
where 4 = —%— B = il C = T , ete., and

124’ 1:2:34:4%" 12:36-4°
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\vH_+IH|+|HI+||H|+1wl+...
9 25 49 81
1 1 1 1
Q=1+ —+ —— + — + — + -
g oest 4k Al
1 1 1 i
R=1+ =%+ —+ — + —— + -+
gt - oBst 49t sl®
B T s S
9 25 49 81
\ s RO Ao ey | el
It follows that P = 0 :w»uJ Q = e g R = ﬂw!w]\»m. g
el g oo 7936 m! v = 363792 @'’
1:2:3-7 me ’ 1:2:3-++9 w: 2 1:2:3-++11 &_w 4
b5 or 14
W = wmm@mw‘_wa T )
{EDs@aen 18]yl
170. The same sums of powers of odd numbers can be found from the
preceding sumg in all numbers oceur, I we let
1 1 1 1 . . 1
M=14+ —+ —+ — + — + - and multiply both sides by —, we
DR gy 4" 5" 28
oblain L 4, s + a1l + U + il + -+ . This series contains only even

M: M: \—_a a: m:
numbers, which, when subtracted from the previous series, leaves the series with

only odd numbers. Hence,

G
PN S il SVEEETSR W W TR T
M: M: w: m: ﬂ: @:
the scries m# is subtracted from M an alternating series is produced:
==l e
giwtolE vt Clad s RoRX AR S e, A W
gn Qn- I on u: 4" m: 6"

this way we can sum the series



